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FEATURE ARTICLE

In this issue of CELESTIAL COMPUTING, we feature an interactive
QuickBASIC computer program called PLANETS.BAS which can be used
to predict special planetary events and positions. The planetary
events which can be calculated with this software are

Perihelion and aphelion of a planet
Greatest elongation or opposition of a planet
Conjunction in longitude between two planets

Minimum angular separation between two planets

>

>

>

> Closest approach distance between two planets
4

> Time of the equinoxes and solstices of the Sun
>

Position of a planet at a user specified epoch

Program PLANETS includes three different algorithms for computing
planetary positions. It also illustrates a typical application of
the theory of minima and maxima to solve astronomical problems. A
discussion about minmax problems can be found in the NUMERICAL
METHODS column for this issue, and a short tutorial about
coordinate systems and transformations is provided in the
FUNDAMENTAL ASTRONOMY column.

The following is a brief description of each of the main menu
options of program PLANETS.

Perihelion and aphelion of a planet

This option determines the time when a planet is closest to the
Sun and the time when a planet reaches its greatest distance from
the Sun. The minimum distance of a planet to the Sun is called
perihelion and the maximum heliocentric distance of a planet is
called aphelion.

Greatest elongation or opposition of a planet

This option of program PLANETS determines the greatest elongation
of an inner planet or the time of opposition of an outer planet.
Greatest elongation is the instant when the angle between an inner
planet and the Sun, when viewed from the Earth, reaches its
maximum value. The time of opposition of an outer planet is the
instant when the geocentric (Earth-centered) longitude of the Sun
and planet differ by exactly 180 degrees.
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Conjunction in longitude between two planets

This option determines the time of conjunction in longitude of two
planets relative to a third body. Conjunction is the instant when
two planets have the same apparent celestial longitude. The data
computed by PLANETS will be conjunction in longitude of two
planets relative to the Sun unless the Earth is one of the planets
selected by the user. In this case, the data displayed is the
geocentric conjunction of the Sun and the planet.

Closest approach distance between two planets

This option of program PLANETS determines the time of closest
approach distance between two planets. This is the instant 1in
time when the separation distance between two planets reaches a
minimum value.

Minimum angular separation between two planets

This option determines the time of minimum angular separation
between two planets. This is the instant when the angle between
two planets, as seen from the Earth, reaches its minimum value.
Time of the equinoxes and solstices of the Sun

This option determines the time of the equinoxes and solstices of

the Sun. An equinox is the point where the apparent geocentric
longitude of the Sun is either 0 degrees (Spring) or 180 degrees
(Fall). At a solstice, the Sun’s longitude is either 90 degrees

(Summer) or 270 degrees (Winter).

Position of a planet at a user specified epoch

This option determines the position of a planet or the Sun at a
specific epoch. For this selection, the user inputs a valid

calendar date and local civil time, and the program determines the
geocentric and topocentric position of the planet or the Sun.

Please note that events computed by program PLANETS are evaluated

in the geocentrlc frame of reference. Although the planet
position is also computed in the topocentric frame, many celestial
events may not be visible at the observer’s location. However,

this method of computation insures that any planetary event is
always predicted. The possibility of visibility can be determined
by the topocentric azimuth and elevation angles at the time of the
planetary event. If the elevation angle is positive, the view in
the azimuth direction is not obscured, and the weather cooperates,
viewing the event is visible.
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The following is a short discussion about the important numerical
algorithms used in program PLANETS.

Position of the Sun

The position of the Sun is computed with the data and algorithms
described in the book, Planetary Programs and Tables by Pierre
Bretagnon and Jean-Louis Simon. The mathematical algorithm
described here closely follows that given in the book.

The fundamental time argument is the number of days relative to
the Julian epoch January 1, 2000 at 0 hours Ephemeris Time (ET)
normalized with respect to 3652500 Julian days. This value can be
calculated for any Julian Ephemeris Date (JED) with

_ JED - 2451545
U= 3652500 (1)

The geocentric, ecliptic mean longitude of the Sun is calculated
with a trigonometric series of the form

50

o .

Ao = Ao + AlU + E: 1i51n(al + le) (2)
1=1

The geocentric distance of the Sun is calculated with another
series of the form

50
Ro = R0 + R1U + Z rlcos(czl + le) (3)
1=1

The longitude of the Sun is corrected for the effect of aberration
(in units of radians) with the following equation

AA; = 1077 (=993 + 17 cos(3.10 + 62830.14 U)) (4)

The nutation in longitude (in units of radians) is calculated from

Ay = 10”7

(-834 sin Al - 64 sin A2) (5)
where
Al = 2.18 - 3375.70 U + 0.36 u?

A2 = 3.51 + 125666.39 U + 0.10 U’
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The apparent, geocentric ecliptic 1longitude of the Sun is
determined as the combination of these three components with the
next equation

_ am a
Ay = An + AAD + Ay (6)

The three components of the geocentric, ecliptic position vector
of the Sun are given by

XO = Ro cos Ao (7a)
Yo = RO sin AO (7b)
2, = 0 (7¢)

We can compute the apparent geocentric, equatorial right ascension
a and declination 8 of the Sun from the two equations

o

-1 . .
° tan (cos Ao’ sin € sin %)) (8)

— 3 _l . [
60 = sin (sin € sin AO) (9)

The inverse tangent used here is a two argument function which

determines the value of an angle between 0 and 2m radians. ¢ is

the true obliquity of the ecliptic.

Finally, we can compute the three components of the apparent,
A

geocentric equatorial unit position vector U, of the Sun with the

following equations

UOx = cos a  cos 60 (10a)
on = sin «_  cos 80 (10b)
UOz = s1n 60 (10c)

The geocentric, equatorial position vector of the Sun can be
determined from the distance and unit pointing vector with

R =R U (11)
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Position of the Planets

Program PLANETS.BAS uses three different algorithms to compute
planetary positions. This approach was chosen to demonstrate the
computer subroutines necessary to implement each method. And
besides, it was challenging and fun! :

The position of Pluto is determined from the method described in
An Accurate Representation of the Motion of Pluto by E. Goffin, J.
Meeus, and C. Steyaert which appeared in Volume 155 of Astronomy
and Astrophysics, pages 323-325, 1986. This algorithm is valid
for the calendar years 1885-2099.

The fundamental time argument for this method is a function of the
Julian Ephemeris Day JED according to the equation

T = JED - 2415020
3652500

(12)

The heliocentric ecliptic coordinates are computed from series of
the form

A=A + A sin o« + B cos a (13)

A" = coordinate mean value
o = 1T + jS + kP
J, S, P = mean longitudes of Jupiter, Saturn and Pluto
i, j, k = integer constants
A, B = coefficients of periodic terms
The position of Mars is calculated with the method described in
Chapters 23, 24 and 25 of Astronomical Formulae for Calculators by

Jean Meeus. The orbital elements are represented by polynomials
of the form

a +aT+aT  +arT (14)
o 1 2 3

where the time argument T is given by Eq. 12 above.
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The orbital elements calculated are as follows.

L = mean longitude

a = semimajor axis

e = orbital eccentricity
Lt = orbital inclination

)
I

argument of perihelion

O
I

longitude of the ascending node
From these elements, the Martian longitude of perihelion is
nT=w+10 (15)
and the mean anomaly of Mars is given by
M=L~-n=L-w-2Q (16)

An iterative Newton-Raphson method is used to compute the true
anomaly v of Mars. The heliocentric distance of Mars is
calculated from

a (1 - ez)

rp = l] + e cos v (17)

From the argument of latitude
u=L+Vv-M-0Q (18)
the heliocentric, ecliptic longitude of Mars can be computed from
A = ATAN3 (cos L sin u, cos u) (19)
where ATAN3 is a four quadrant inverse tangent function.
The heliocentric, ecliptic latitude of Mars is

g = sin 1

(sin u sin () (20)
The calculations for Mars also include long period corrections to
the mean longitude and mean anomaly, and periodic corrections to
the longitude and heliocentric distance.

The positions of the other planets are calculated with the method
described in Low-Precision Formulae for Planetary Positions. This
algorithm has been discussed in several earlier issues of
CELESTIAL COMPUTING and the reader is referred to those articles.
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The geocentric equatorial X, Y, and Z components and magnitude R
of a planet’s position vector are calculated with

Xeq= rp cos Bp cos Ap + r,  cos Bo cos Ao (21a)
Y =r [cos B sin A cos € - sin B8 sin e]
eq P P P P
+ r, [cos Bo sin Ao cos € - sin Bo sin e] (21b)
Z =r [cos B sin A sin £ + sin B cos e]
eq P P P P
+ r, [cos Bo sin Ao sin € - sin B@ cos e] (21c)
R=/X2+Y2+Zz (22)
eq eq eq eq
where
r = heliocentric distance of a planet
r, = geocentric distance of the Sun

B = ecliptic latitude of a planet
B = ecliptic latitude of the Sun

A = ecliptic longitude of a planet
A_ = ecliptic longitude of the Sun

€ = obliquity of the ecliptic

Program PLANETS utilizes what are called objective functions to
predict planetary events or phenomena. These objective functions
define the geometry of the planets relative to the Sun, Earth and
each other as a function of time.

As an example, let’s consider the closest approach distance
between two planets. The objective function in this case is an
equation which describes how the heliocentric separation distance
between any two planets changes as a function of time. The
planets are closest to one another whenever this separation
distance is a minimum.
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Mathematically, we calculate

A = /(xl- xa)2 + (Y, - Yz)z + (2, - zz)z‘ (23)

In this equation, "A" is the objective function we seek and

]
<
N
i

heliocentric position vector of first planet

N
i

heliocentric position vector of second planet

The closest approach distance is the instant in time when this
objective function reaches a minimum value. PLANETS searches for
all the minimum values of the objective function contained in the
time interval specified by the user.

Searching for minimum and maximum values of a function can be done
in several ways. One method is a brute force technique which
consists of stepping forward in time at small time steps looking
for a minimum value of the objective function. This method is
very slow and inefficient. Another technique is to use a
numerical method which calculates a function’s minima by using
information about the behavior of the function itself. This is
the technique used in program PLANETS.

The minimization method used by program PLANETS is described in
Chapter 10 of Numerical Recipes by W. Press, B. Flannery, S.
Teukolsky and W. Vetterling. The algorithm is due to Richard
Brent and consists of a two step approach to the minimization
problem. The first step of the algorithm brackets the function
minima (or maxima), and the second step actually calculates the
minima or maxima. A function maxima can be found by minimizing
the negative value of the objective function. A unique feature of
Brent’s method is that it does not require calculation of the
derivatives of the objective function. A more detailed discussion
about Brent’s method of bracketing and minimization is provided in
the NUMERICAL METHODS column for this issue.

The following is a short discussion of the objective functions
used in the different options of program PLANETS.

Perihelion and aphelion of a planet

Perihelion is the minimum value of the heliocentric distance of a
planet, and aphelion is the maximum value of this distance. The
objective function F is given by

F =R (24)
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where

Rp = heliocentric distance of a planet

Greatest elongation or opposition of a planet

The objective function used here is the geocentric elongation
angle of the planet. This option searches for the maximum value
of the elongation angle which can be calculated from

RZ + RZ - R?
1 © Pg ph

E = cos (25)
2 R R
© pg
where
R, = geocentric position of the Sun
Iﬁm = geocentric position of the planet
T heliocentric position of the planet

Since we seek a maximum, the objective function is given by

F=+-E

Conjunction in longitude between two planets

This objective function is the minimum value of the difference in
apparent heliocentric or geocentric celestial 1longitude of two
planets. This can be written as

F=2a,-2 (26)

A_ = heliocentric or geocentric celestial longitude
of each planet
The heliocentric longitudes are used unless the Earth is one of

the planets selected by the |user. Otherwise, geocentric
longitudes are used in the objective function.
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Closest approach distance between two planets

The objective function used in this option is the minimum value of
the heliocentric distance between any two planets. The objective
function is

- _ 2 _ 2 _ 2
F /(X1 X))+ (Y- Y)" + (2,-2) (27)
where

X, Y, 2 = position vector of first planet

Xz, Yz, Z2 = position vector of second planet

Minimum angular separation between two planets

The objective function used here is the value of the geocentric
pointing angle between two planets. This function is calculated
by finding the angle between the geocentric unit position vectors
of the two planets with the following dot product equation.

..1 A A
6 = cos ~( Upl' Upz ) (28)
where
A
Up1 = geocentric unit position vector of first planet
A
1%2 = geocentric unit position vector of second planet

Time of the equinoxes and solstices of the Sun

This option determines the time of the year when the apparent
geocentric 1longitude of the Sun is an integer multiple of 90

degrees. For this option, we seek the minima of the objective
function defined by
F=»X-2 (29)
where

= 0, 90, 180, 270 degrees
A = apparent geocentric longitude of the Sun
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The four cases for A are as follows.

= 0 degrees > spring equinox
= 90 degrees » summer solstice
180 degrees » autumn equinox

b
]

270 degrees » winter solstice

Position of a planet at a user specified epoch

No special objective function is used for this option of program
PLANETS. This main menu selection is a straightforward calculation
of the geocentric and topocentric position of a planet or the Sun.

Program PLANETS computes what are called local minima or maxima
for the time period requested by the user. For any time period,
there may be a global minima or maxima. The global event time
will be the absolute minima or maxima of all the objective
function event times found during a search period. For example,
in the following diagram points A and B are local minima and point
C is the global minima. A detailed explanation of the
minimization algorithm used in program PLANETS is given in the
NUMERICAL METHODS column for this issue.

Ssparation angle between Mercury and Venus
Epoch dats January 1, 1737 Time 286 h Bm Bs
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Figure 1 Local and Global Minima

Page 11



Vol.1l +» No.4 CELESTIAL COMPUTING Fall 1989

Program Notes

During execution of program PLANETS, several menus will appear
displaying choices and requesting information from the user. Any
item on these menus can be selected in two different ways. The
user may scroll through the list of menu items by either pressing
the number key which corresponds to that item, or by using the up
and down arrow keys on the keyboard. The software will highlight
the user’s choice, and the item can be input to the program by
pressing the [ Enter ] Kkey.

The following one line menu will also appear at several places
during the execution of program PLANETS.

C)ontinue P)rint R)estart Q)uit

Any item from this menu is selected by pressing the first letter
of the selection (C, P, R or Q). Selection C)ontinue allows the
user to continue the program after a data screen or message has
been displayed. If the user chooses P)rint screen, the software
will print the currently displayed screen to a printer. R)estart
will start the program again from the beginning, and selection
Q)uit will exit the program.

Program PLANETS will display a main menu. The screen menu will
appear as follows.

Perihelion and aphelion of a planet

Greatest elongation or opposition of a planet
Conjunction in longitude between two planets
Closest approach distance between two planets
Minimum angular separation between two planets
Time of the equinoxes and solstices of the Sun

SN0 O b WN
et v et Nt St et

Position of a planet at a user specified epoch

At this point the user can make a choice and the program will
display a short message describing the option selected. You if
decide that the menu item you have selected is not what you really
want, press R)estart to start the program over.

The next display will be a planetary menu. If the main menu
selection involves two planets, or the Sun and a planet, the
planetary menu will be displayed twice. The planet displayed in
the third menu item may be either the Earth or the Sun depending
on the main menu selection.
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After the main menu and planetary menus are accommodated, PLANETS
will request a calendar date to start the program with the prompt

Please enter the initial calendar date
Month [ 1 - 12 ], Day [ 1 - 31 ], Year [ YYYY ] )
For example, October 21, 1948 is input as 10,21,19548

The user should respond with three integer numbers separated by
commas. The full calendar year should be entered. For example,
the calendar year 1987 is input as 1987 not 87. The number input
for the month should be an integer between 1 and 12 and the number
input for the day is between 1 and 31. PLANETS accounts for the
Gregorian reform and will display the following error message if
an invalid calendar date is selected.

This date does not exist!!

If this error occurs, the user should press C)ontinue and the
program will redisplay the calendar date prompt.

For all main menu options except selection "7 ) Position of a
planet at a user specified epoch", the software will prompt the
user for the search duration of the simulation in days.

Main menu option 7 will also request the observer’s local civil
time with

Please input your local civil time
Hours [ 0 - 24 ], Minutes [ 0 - 60 ], Seconds [ 0 - 60 ]
For example, 9:30:45 p.m., is input as 21,30,45

The user should input three positive numbers separated by commas.
Please note that civil time is input in 24 hour format. The
number for hours will be an integer between 0 and 24 and the input
for minutes and seconds numbers between 0 and 60.

The user’s time zone will be requested with this prompt

Please input your time zone
This is an integer number between 0 and 23.
Time zones are positive west of Greenwich.
For example, Eastern Standard Time is time zone 5.

The user response to this request should be an integer number
between 0 and 23. Please note that times zones are measured
positive west of Greenwich. For example, Eastern Standard Time is
time zone 5, Central Standard Time is time zone 6, etc.
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The program will ask for the status of Daylight Savings Time with
Daylight Savings Time ?
Y = yes, n = no

The user should respond with y for yes if Daylight Savings Time is
in effect at his or her location, or n for no if it is not.

NOTE: If the user inputs 0 for the time zone and no for Daylight
Savings Time, the time of a planetary event will be displayed in
Universal Time (UT).

The program will ask for the observer’s geographic latitude with

Please input your geographic latitude
Degrees [ =90 to +90 ], Minutes [ 0 - 60 ], Seconds [ 0 - 60 ]
North latitudes are positive, south latitudes are negative

The user should respond to this request with three numbers
separated by commas. The first number will be an integer between
-90 and +90 and the second and third numbers should be positive.
South latitudes are negative and north latitudes are positive.

The prompt for the observer’s geographic west longitude appears as

Please input your geographic west longitude
Degrees [ 0 - 360 ], Minutes [ 0 - 60 ], Seconds [ 0 - 60 ]
West longitude equals 360 - east longitude

This request requires three positive numbers separated by commas.
The west longitude in degrees is an integer between 0 and 360, and
the response for minutes and seconds are numbers between 0 and 60.
Note that an observer’s west longitude is equal to 360 degrees -
the east longitude.

After program PLANETS has completed the main menu option
requested, the software will prompt the user for another selection
with

Another Calculation ?

y = yes, n = no

At this point the user should input y for yes to redisplay the
main menu or n for no to completely exit the program.
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If the user responds with yes, PLANETS will display the prompt

Do you want to change
the observer’s location ?

y = yes n = no

A user response of n for no will tell the software to use the
current observer information for the next menu option. This
allows the user to calculate a variety of events for the same
observer location without reentering the information each time.
If the user chooses to keep the current observer information, the
observer’s latitude, 1longitude, time zone and Daylight Savings
Time status will not change.

Program PLANETS will display the following output.

Calendar date of the planetary event

Local civil time of the planetary event

Julian Ephemeris Date (JED) of the planetary event
Ephemeris Time (ET) of the planetary event

The observer’s local sidereal time

The planet’s topocentric azimuth and elevation

The planet’s geocentric right ascension and declination

vV vV vV v v v v v

The planet’s heliocentric and geocentric distances

Program PLANETS will print the Julian Ephemeris Date and the
Ephemeris Time of the planetary event in hours, minutes and
seconds. The observer’s local sidereal time in hours, minutes and

seconds 1is also provided. The software will then display the
topocentric azimuth and elevation of the selected planet 1in
degrees, minutes and seconds. The geocentric right ascension in

hours, minutes and seconds, and the geocentric declination in
degrees, minutes and seconds are another part of the screen
display. The heliocentric and geocentric distances of the planet
at the computed event time are printed in Astronomical Units.

PLANETS will also display additional data which is a function of
the actual main menu option selected by the user. For example,
the closest approach distance in Astronomical Units will be
displayed for menu item "4 ) Closest approach distance between two
planets". For main menu options which involve two planets, the
program will calculate and print the data for both planets except
when the second planet is the Sun or Earth.
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The following are several output screens from program PLANETS.BAS.
The first example illustrates typical closest approach conditions
between the Earth and Mars. It also shows the display format of
the topocentric, geocentric and heliocentric coordinates.

Closest approach distance between Earth and Mars

September 21, 1988

39° 45’ oo"
Time Zone 7

North

Julian Ephemeris Date
Ephemeris Time
Local sidereal time

Closest approach distance

Topocentric azimuth
Topocentric elevation

Geocentric right ascension
Geocentric declination

Heliocentric distance
Geocentric distance

20h 33 m 23 s

104° 58’ 48" West
Daylight Savings Time = No

2447426.64921

3 h 34 m 52 s

20 h 38 m 21 s

0.39309621 A.U.
* Mars *

1122 30° 42"
22° 18’ 11"

O h 033 m 25 s
-1 42’ o2"

1.39315639 A.U.
0.39309621 A.U.

This next example is a screen display of the minimum angular
separation conditions between Mars and Jupiter.

Minimum angular separation between Mars and Jupiter

June 14, 1991

39° 45’ oo0"
Time Zone 7

North

Julian Ephemeris Date
Ephemeris Time
Local sidereal time

Separation angle

8h 41 m 32 s

104° 58’ 48" West
Daylight Savings Time = No

2448422,15491
15 h 43 m 04 s
2h 11 m 22 s

©

0 36’ 48"
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FUNDAMENTAL ASTRONOMY

In this edition of FUNDAMENTAL ASTRONOMY, we present a QuickBASIC
computer program called CSYSTEMS.BAS which can be wused to
understand fundamental astronomical coordinate systems. These
systems are used to define the position and motion of celestial
bodies. Program CSYSTEMS is a coordinate conversion utility which
can be used to convert astronomical positions from one coordinate
system to another.

The coordinate conversion options of program CSYSTEMS are

Polar to rectangular coordinates
Rectangular to polar coordinates
Ecliptic to equatorial coordinates
Equatorial to ecliptic coordinates
Geocentric to topocentric coordinates
Topocentric to geocentric coordinates
Mean-of-date to True-of-date coordinates

v v v v v v v v

True-of-date to Mean-of-date coordinates

Fundamental Concepts

Program CSYSTEMS makes use of vectors and matrices when computing
coordinate conversions. A quantity which has both magnitude and
direction is called a vector. A vector can be represented by a
directed line segment, where the length of this line segment is
the magnitude. A matrix is an array of numbers arranged in rows
and columns. A vector is a column matrix consisting of m rows and
1 column. The velocity of a planet in its orbit about the Sun is
an exanmple of a vector.

Any coordinate system can be specified in terms of its origin, the
direction of its principal axis, and its fundamental plane. All
of the coordinate systems we are about to describe are called
orthogonal coordinate systems. For these coordinate systems, the
three axes are mutually perpendicular, and meet at the origin.

Program CSYSTEMS is concerned with celestial positions which may
be defined by two types of coordinates. The first type is called
rectangular or cartesian coordinates, and the other type is called
polar coordinates. The following diagram illustrates these two
types of coordinates.
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»
>

P (x,y.2)

Rectangular Coordinates

Polar Coordinates

This diagram shows that the rectangular coordinates of a vector P

consist of x, y, and z components
onto the three axes. The polar coo

which are the projections of P
rdinates of vector P consist of

an angle a measured in the fundamental plane, an angle & measured

above or below this plane, and the
the vector P.

The conversion of a vector X1 defi

scalar length or magnitude r of

ned in coordinate system 1 can

be converted to a vector iz in another system 2 by a coordinate

transformation defined as follows.

The matrix M can be represented by
fundamental matrices which involve
the three coordinate axes.

The matrix for an angular rotation

1 0 0o
Mx(¢) = 0 cos ¢ sin ¢
0 -sin ¢ cos ¢

(1)

different combinations of three
angular rotations about each of

about the x-axis of angle ¢ is

(2)
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The matrix for an angular rotation about the y-axis of angle ¢ is

cos ¢ 0 -sin ¢
My(¢) = 0 1 0 (3)
sin ¢ 0] cos ¢

The matrix for an angular rotation about the z-axis of angle ¢ is

cos ¢ sin ¢ 0
Mz(¢) = -sin ¢ cos ¢ 0] (4)
0 0 1

A transformation matrix is usually composed of one or more matrix
multiplications. Two matrices, A and B, can be multiplied
together if the number of columns of matrix A is equal to the
number of rows of matrix B. If matrix A has m rows and n columns,
and matrix B has n rows and p columns, then the product of these
two matrices C is given by

Aik Bkj 1 1 ...m, Jj 1 ...p (5)

1l
x
] -]
-

The vector iz defined by Eq. (1) above can be converted back to

vector 21 by using the inverse of matrix M given by

1 2

§=[M]_1§ (6)

A very important (and convenlent) property of orthogonal matrices
is the fact that the inverse of an orthogonal matrix is equal to
its transpose.

The transpose of an orthogonal matrix can be determined by
rearranging the matrix so that the rows of the original matrix
become the columns of the new matrix. For example, to calculate
matrix B as the transpose of matrix A, the indices of the matrix B
are arranged as follows:

[]-[2 - [0 - (=] - 2], )
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Polar and Rectangular Coordinates

The x, y and z components of a rectangular position vector are

R=RU = R (8)

R

z

and the magnitude or 1length R of the position vector can be
determined from the individual vector components with

R = V/ R® + R® + R® (9)
x y z

A rectangular unit pointing vector has a scalar magnitude or
length equal to 1 and can be written in several ways as shown by
this next expression.

U R /R cos B cos A
6=Jdu t=dr/mi= inA t=Ui+UJj+Uk (10
= , b= ./ = { cos B sin =U ) Kk (10)
U RZ/R sin B

A

In the 1latter part of this expression, i, 3, and ﬁ are unit
pointing vectors along the x, y, and z axes respectively.

The polar coordinates can be computed from the components of the
rectangular unit pointing vector with the next two equations.

8 = sin (Uz) (11a)

o« = ATAN3 (U, U ) (11b)

Ecliptic and Equatorial Coordinates

In the ecliptic coordinate system, the origin is usually the
center of the Sun or heliocentric, the fundamental plane is the
ecliptic plane, and the X or principle axis is in the direction of
the Vernal Equinox. The ecliptic plane is the plane described by
the Earth’s motion about the Sun. The Vernal Equinox is
established at the moment when the line of intersection of the
ecliptic and equatorial planes passes through the center of the
Sun. This line of intersection is called the line of equinoxes
and passes through the Sun twice a year. The positive direction
of the principle occurs during the March equinox, and is also
called the first point of Aries.
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In the equatorial system, the origin is usually the center of the
Earth or geocentric, the fundamental plane is the Earth’s
equatorial plane, and the X axis is along the Vernal Equinox.

The conversion of ecliptic to equatorial coordinates consists of a
matrix rotation about the x-axis through an angle ¢, called the
obliquity of the ecliptic. The obliquity is the angle between the
ecliptic plane and the Earth’s equatorial plane.

This transformation can be expressed as

R =| M (-¢e) | R (12)
[ o ]

eq ec

The conversion of equatorial to ecliptic coordinates is

R = [ M_(€) ] R (13)

ec eq

Geocentric and Topocentric Coordinates

In the geocentric coordinate system, the origin is the Earth’s
center, the fundamental plane is the Earth’s equator, and the X
axis 1is in the direction of the Vernal Equinox. In the
topocentric system, the origin is the observer’s geographic
location on the Earth’s surface, the fundamental plane is a plane
tangent to the Earth’s surface at that location, and the principle
axis is along the direction of north.

The geocentric x, y, and z components of the observer’s inertial
position vector are calculated with the following three equations.

R°x = Cx cos ¢ cos 6 (14a)
R =C cos ¢ sin @8 (14b)
oy y
Roz = Cy sin ¢ (14c)
where
positive north
¢ = observer geographic latitude
negative south
6 = observer local sidereal time

The calculation of an observer’s local sidereal time was described
in the Spring 1989 issue of CELESTIAL COMPUTING.
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The geodetic constants Cx and Cy are functions of the observer'’s
latitude, altitude, and the shape and size of the Earth. They are
determined with the next two equations.
r
c = 24 + h (15a)

V/ 1 - (2f - £2) sin%p

r (1 - £%)
c = =4 +h (15b)

V/ 1 - (2f - £2) sin%

where
r. = equatorial radius of the Earth
f = flattening factor of the Earth
positive above sea level
h =

observer’s altitude
negative below sea level

The matrix which transforms position in the geocentric system to
position in the topocentric system is a function of the observer’s
geographic 1latitude on the Earth and local sidereal time. The

conversion of a ?eocentric unit vector q; to a topocentric unit
position vector U_ can be accomplished with the following matrix
transformation.

A A

U = [ A ] U, (16)

where the 9 components of the 3 by 3 transformation matrix A are
determined from the following equations.

A11 = sin ¢ cos 6 A12 = s1ln ¢ sin 6 A13 = =-COSs 8

A = =-sin @ A = cos 8 A =0 (17)
21 22 23

A31 = COS ¢ cos 8 A32 = sin ¢ cos 6 A33 = sin ¢

Can you derive the individual transformation matrices which define
this transformation?
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This coordinate transformation also involves a translation of the
origin from the Earth’s center to the observer’s location. This
translation consists of a vector subtraction given by

ﬁT = ic - ﬁﬁ - (18)
where

ﬁT = topocentric position vector

ﬁc = geocentric position vector

R_ = observer’s geocentric position vector

The topocentric unit position vector is calculated by normalizing
the three components of the position vector.

Mean-of-date and True-of-date Coordinates

The conversion of Mean-of-date coordinates (MOD) to True-of-date
coordinates (TOD), and vice versa involves corrections for both
precession and nutation. The names of the fundamental plane and
principle axis are the same 1in both systems. However, the
mean-of-date system does not include the perturbations of the
fundamental plane and principle axis due to both precession and
nutation.

The coordinate conversion can be accomplished with the following
two matrix transformations.

R = | N ] P ] R (19)
TOD K MOD

- T
oo = [ [7] [ 7] ] R

=

The precession matrix P is computed with the following three
matrix multiplications.

[ P ] =M (-z - 90°) M_(6) Mz(90°- <) (21)

A numerical method for calculating this matrix was described in
the FUNDAMENTAL ASTRONOMY column of the Summer 1989 issue of
CELESTIAL COMPUTING.
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The nutation matrix N is also a combination of three matrix
multiplications as follows.

[v] =m0 m o m @) (22)
where

€ = true obliquity of the ecliptic

Ay = nutation in obliquity

€ = mean obliquity of the ecliptic

The calculation of the obliquity terms in this matrix was
described in the FUNDAMENTAL ASTRONOMY column of the Spring 1989
issue of CELESTIAL COMPUTING.

Program Notes

Each coordinate conversion option of program CSYSTEMS will allow
the user to input either polar or rectangular coordinates. Both
of these two options will also request the distance of the
celestial object.

If the user wants to transform angles only, he or she should input

the number 0 in response to the distance prompt. In this
situation, the software will assume the celestial object is very
far away, and transform the pointing angles only. This same

effect can be accomplished by inputting the components of a unit
position vector 1in response to the software’s request for
rectangular coordinates.

The following is a short discussion of additional user inputs
which are unique to each coordinate conversion option.

Polar to rectangular coordinates

This option will allow the user to input either azimuth and
elevation, or right ascension and declination. Please note that
azimuth is input in the units of degrees, minutes and seconds, and
right ascension should be input in the units of hours, minutes and
seconds.

Ecliptic to/from equatorial coordinates

This option will also request the calendar date and Universal Time
of the coordinate conversion. The calendar date prompt requires
all four digits of the calendar year, and the Universal Time
should be input in 24 hour format.
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Geocentric to topocentric coordinates

This option of program CSYSTEMS will also ask for the geographic

latitude, west longitude and altitude of the observer. Please
note that north latitudes are positive and south latitudes are
negative. An observer’s west longitude is equal to 360 degrees

minus the east longitude. Observer altitudes above sea level are
positive, and observer locations below sea level are negative.
The observer’s altitude must be input in the units of meters, and
the distance of the celestial object must be input in the units of
kilometers.

Mean-of-date to/from True-of-date coordinates
This menu selection will also request the calendar dates and

Universal Times of both the mean-of-date epoch and the
true-of-date epoch.

The following is the CSYSTEMS solution to Example 8.a in the book,
Astronomical Formulae for Calculators, page 45.

Equatorial to ecliptic coordinates

Calendar date January 1, 1950
Universal time Oh O0Om 0.000 s
Julian Date 2433282.5

Ecliptic Coordinates

Latitude 6. 40’ 46.870" North
Longitude 112 31’ 31.186"
X~-component of unit position vector -.3804913815415064
Y-component of unit position vector .9174400744149217
Z-component of unit position vector .1163186074116204

Equatorial Coordinates

Right ascension 7h 42 m 15.525 s
Declination 28 08’ 55.110" North
X-component of unit position vector -.3804913815415064
Y-component of unit position vector .7954044540011024
Z-component of unit position vector .4717605993804951
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APPLIED ASTRODYNAMICS

In this edition of APPLIED ASTRODYNAMICS, we present a QuickBASIC
program called VSAT.BAS which can be used to determine visibility
conditions of Earth satellites. The software 1is wvalid for
satellites 1in both circular and elliptical orbits, and the
observer can be located anywhere on an oblate Earth. Program VSAT
also computes Earth shadow conditions during visibility, and
provides a graphics display of pointing angles and groundtrack.

Program VSAT uses an analytic method to propagate a satellite’s
orbit while searching for line-of-site visibility between the
satellite and an Earth observer. The method of orbit propagation
is described in Chapter 10 of Methods of Orbit Determination by P.
R. Escobal, and includes the first order effect of the Earth’s
oblateness on the satellite’s motion.

The perturbations of mean anomaly M, right ascension of the
ascending node Q, and argument of perigee w are calculated as a
function of time with the following set of equations

-~

M=M +10t (1)
Q=Qo+f2t (2)
w =0 + ot (3)

In these three equations, M, QO and w, are the initial values of

the orbital elements.

The Keplerian mean motion is described by the equation

n = — (4)

where T, is the Keplerian or unperturbed period of the satellite.

The perturbed mean motion includes the oblateness effect and is
computed from the next equation

~ 1 - e2
n=n 1+1.5J ———m———
2 2

P

(1 - 1.5 sinZL) (5)
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The perturbation of the satellite’s argument of perigee is

. dw ~ 1 -é° 2
w=ﬁ=l.5J2n—————r—)-5———(2-2.551nL) (6)

Q=3 =-1.5J, i Z—=——— cos ¢ (7)

= simulation time

= semimajor axis

= semilatus rectum = a (1 - ez)

mean anomaly

= orbital inclination

= right ascension of the ascending node

= argument of perigee

9 € D 2T O
]

= Keplerian mean motion

o 1}
I

perturbed mean motion
Kepler’s equation for an elliptic orbit is defined by
M=E - e sin E (8)

This is a transcendental equation which is solved iteratively in
program VSAT for the value of eccentric anomaly E. The true
anomaly of the satellite can be calculated with

v = ATAN3 [ 1 - 2 sin E, cos E - e ] (9)

As the satellite’s orbit is propagated forward in time, program
VSAT evaluates a visibility function. Whenever the value of this
visibility function is positive, the satellite is visible to the
Earth observer. The derivation of the visibility function is
described in Chapter 5 of Methods of Orbit Determination by P.R.
Escobal. This visibility function is defined by the following
expression

F = a [(cos E - e) ﬁ-ﬁ + (V1 - e? sin E) 6-2 ] - G (10)
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where
a = semimajor axis
E = eccentric anomaly
e = orbital eccentricity
¢ = observer’s geographic latitude
6 = observer’s local sidereal time
J2 = oblate Earth gravity coefficient

2 .2

G = Cx cos“¢ + Cy sin’¢
Px = cos wcos @ - sin w sin Q cos
Py = cos W sin Q + sin w cos Q cos
Pz = sin w sin ¢
Qx = -sin w cos N - cos w sin Q cos
Qy = -gin w sin Q + cos w cos Q) cos
Qz = cos w sin L
Zx = cos ¢ cos 6
Zy = cos ¢ sin @
Z = sin ¢

The vectors P, Q and Z are called orbit plane unit vectors. The
geodetic constants Cx and Cy are defined in the FUNDAMENTAL

ASTRONOMY section of this issue.

Program VSAT also determines if a satellite is within the umbra or
penumbra portion of the Earth’s shadow. The best observing
conditions occur when the observer is in darkness, the satellite
is visible, and has not entered the Earth’s shadow. The software
first calculates an umbra and penumbra angle with the two
equations given by '

Yy =m -6 = umbra (1la)

wp =7 + ep s penumbra (11b)
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where

R
- : -1 e
n = 8s1ln [ R ]
sC

R radius of the Earth

I

R = geocentric distance of the satellite

In these equations, m is the size of a cylindrically shaped shadow.

The size of the umbra portion of the shadow at the satellite’s
distance is calculated from the following equation

(12)

where
= radius of the Sun

R
8
Res= distance from the Earth to the Sun

The size of the penumbra portion of the shadow is calculated from

-1 | R *+R
8 = sin L (13)
P R
es
The program then evaluates a shadow parameter defined by the
equation
_ Iisc x.ﬁes : = =5 14
p = - —x—=— sign (R__* R ) (14)

es
es

We can define a critical value of the shadow parameter for both
the umbra and penumbra portions of the Earth’s shadow. These are
geometric conditions given by

¢ = |R

o sin ¢ (15a)

o, = |R__| sin y_ (15b)
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The computer algorithm compares the value of the shadow parameter
with these two critical values to determine shadow conditions. If
the condition P, < P =0 is satisfied, the satellite is in the

penumbra portion of the Earth’s shadow.

If the condition 0 = p = @, is true, the satellite is in the umbra

portion of the Earth’s shadow. If the absolute value of the
calculated shadow parameter is larger than the penumbra shadow
value, the satellite is not in the Earth’s shadow.

Program Notes

Program VSAT will request the following inputs from the user.

The observer’s geographic latitude

The observer’s geographic west longitude

The observer’s altitude above or below sea level
The observer’s time zone

The status of Daylight Savings Time (yes or no)
The orbital inclination of the satellite’s orbit
The satellite’s orbital period

>
>
>
4
>
>
>
> The eccentricity of the satellite’s orbit
> The satellite’s argument of perigee

> The calendar date of a reference equatorial crossing
> The GMT of a reference equatorial crossing

> The west longitude of a reference equatorial crossing
> A visibility search step size

>

A visibility print step size
Program VSAT will provide the following program output.

The observer’s local civil time during visibility
Azimuth, elevation and slant range to the satellite
Topocentric right ascension and declination

Shadow conditions (umbra or penumbra)

Azimuth and elevation graphics

Right ascension and declination graphics

v v vV v v v v

Satellite groundtrack graphics
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NASA Prediction Bulletins

These bulletins contain information about the classical orbital
elements and reference equatorial crossings of satellites. NASA
prediction bulletins are issued periodically as the satellite
orbit changes, and are available free from the following address.

NASA Goddard Space Flight Center
Project Operations Branch

Code 513

Greenbelt, MD 20771

The bulletins are organized in a cross reference system which
relates a NASA catalog number to the international designation of
a satellite. The following is a list of several satellites.

Name Catalog Number International Designation
Mir 16609 86 17A
Salyut 7 13138 82 33A
Seasat 10967 78 64A

When requesting prediction bulletins from NASA, be sure to include
the catalog number of the satellite(s) of interest.

Program VSAT also requires the orbital period of a satellite. The
orbital period (in minutes) can be determined by dividing 1440
minutes by the number of orbits per day printed on the bulletin.

The following is a typical graphics display from program VSAT.

7 hours 57 minutes 180 seconds June 21, 1989
39 degrees 45 minutes North 1804 degrees 58.8 minutes Uest
Range 488S .07 C nm ) Shadow No
57 .88 R
E s ‘.
L . -,
E S .
[V . .
A . .
T S .
1 | z28.e8 . g
[ ¢] s .
N "
4 M .
e : -
g : M
8.75 : .
N N . . N 1 . . . . . }
a 186 360

AZIMUTH ( degrees )
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SYMBOLIC COMPUTING

In this session of SYMBOLIC COMPUTING, we present Eureka: The
Solver and MathCAD equation files which can be used to determine
the closest approach conditions between an observer on an oblate
Earth and an Earth satellite. Let’s discuss the MathCAD version
of the equation file.

This report describes a method for finding closest approach
conditions between an Earth satellite and a ground site. The
analysis is wvalid for Earth satellites in either circular or
elliptical orbits and the Earth is modelled as an oblate spheroid.
Results from this analysis include the orbital true anomaly and
slant range at closest approach.

All equations in this report are expressed in an
earth-centered-fixed or ECF coordinate system. This system is
centered at the Earth with the x-axis aligned with Greenwich, the

z-axis aligned with the Earth’s spin axis and the y-axis completes
the right-handed orthogonal systen.

We begin by calculating a utility constant which will be used to
convert angles from degrees to radians.

dtr := m

The equatorial radius of the oblate Earth model is

a := 3443.923 ( nautical miles )

e
and the flattening factor of this model is

-1 —dimensi
f := 398 . 557 ( non-dimensional )

Next we define the classical orbital elements of a typical Earth
satellite.

The semimajor axis in nautical miles is
a (= 4143.923
and the orbital eccentricity is

e := .0085 ( non-dimensional )
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The orbital inclination is specified in degrees as
i := 63.435
and converted to radians with
i = i-dtr
Next we input the argument of perigee
w := 165.25 ( degrees )
W := w-dtr ( radians )
and the east longitude of the ascending node
Q := 125.989 ( degrees )
Q := Q-dtr ( radians )
The geodetic latitude of the ground site is
¢ = 39.75 ( degrees )
¢ := ¢-dtr ( radians )
North latitudes are positive and south latitudes are negative.
The east longitude of the ground site is
A := 255,02 ( degrees )
A := A-dtr ( radians )
The ground site altitude is initially input in feet and then
converted to nautical miles. Site altitudes are positive above
sea level and negative below sea level.

H :

5280 ( feet )

H

H 6076.115486

( nautical miles )

The components of the ground site ECF position vector ( r ) can be
calculated with the following set of equations.
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a
G = hd + H

1 ~
V1- (2 £- £2) sin’

2
G = 1-f + H

2 -
V1-(2f-£% sin®

G1 cos ¢ cos A
r := G1 cos ¢ sin A
G2 sin ¢

First we would like to calculate and plot the behavior of the
slant range as a function of orbital true anomaly.
Let’s define "j" as the true anomaly range variable.

3 =0 ..72 ( degrees )
The orbital true anomaly in five degree steps is

6j := 5-j-dtr ( radians )
and the argument of latitude in radians is

o = (w + 8)

Here we use the MathCAD "vec" operator to calculate o and other
array elements elements we need.

The satellite position magnitude can be calculated from

1 - e2
rmo:= a1 1e cos(8)

The x, Y and z components of the satellite ECF position vector are
computed with the following three equations.

rx := (rm-(cos(Q)-cos(c) - sin(Q)-cos(i)-sin(o)))
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(rm- (sin(Q)-cos( ) + cos(Q)-cos(i)-sin(0)))

ry

rz := (rm-sin(i)-sin(o))

The slant range from the ground site to the spacecraft is
the magnitude of the vector difference of the two position vectors.

range := [ V/er - ro)2 + (ry - ri)2 + (rz - rz)z‘]

The minimum and maximum slant ranges can be found using the
built-in array functions of MathCAD. This information also helps
us determine the proper y-axis scaling for plotting.

rmax := max(range)

rmin := min(range)
rmax = 7.559-10° ( nautical miles )
rmin = 1.157-10° ( nautical miles )

The following is a plot of ground site-to-spacecraft slant range
in nautical miles as a function of true anomaly in the orbit.

8000

range ///

0 53 360

True anomaly ( degrees )
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Now we can calculate the true anomaly at closest approach using
the built-in derivative and root functions of MathCAD.

First we need to define the satellite position vector in terms of
the orbital true anomaly with the following equations.

1 - e?
™m(8) := a7 aTcos(8)
.rx(8) := rm(8):(cos(Q)-cos(w + 6) - sin(Q)-cos(i) sin(w + 8))
ry(6) := rm(8)-(sin(Q)-cos(w + 8) + cos(Q)-cos(i)-sin(w + 08))
rz(6) := rm(6)-sin(i)-sin(w + 8)

The relationship between true anomaly and slant range is given by

>

2 + (rz(e) - r))

range(8) := V/(rx(e) - ro)2 + (ry(e) - rl)

From the plot of slant range versus true anomaly, we can provide
the MathCAD root finder with an initial guess for true anomaly at
closest approach.

e := 315 ( degrees )
6 := 6-dtr ( radians )
The true anomaly at closest approach is the point where the

derivative of slant range is zero (a local minima) near our
initial guess.

. d
eca 1= root( 35 range(8),6 )

Finally, the true anomaly at closest approach in degrees is

@ mam . n
O.a T 8., T80

e = 314.818 ( degrees )

ca

and the slant range from the ground site to the satellite is

range := range(eca-dtr)

range = 1.157-10° ( nautical miles )
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This problem can also be solved with the use of the MathCAD Solve
blocks capability. First we need to give the algorithm an initial
guess for the true anomaly at closest approach.

e :=m ( radians )
Next we need to define the fundamental equations and all
constraints within the Given/Find construct of a MathCAD Solve

block.

Given

2 2 4 (rz(8) - r.)%

range () := V/(rx(a) - ro) + (ry(8) - r. ) 5

1

The fundamental equation is the derivative of the slant range
which we will call f(8).

Q

f(8) := 356 range(6)

We constrain the solution to the minimum by requiring that the
second derivative of the range function f(6) be positive.

d
-cﬁ'f(e) >0

We also require that the solution be within the true anomaly range
of 0 to 360 degrees with the next two constraints.

e zo0 ( radians )
6 = 2'm ( radians )

Finally, we Find the value of orbital true anomaly which satisfies
the requirement that the derivative of range is zero.

f(e) = 0O
eca := Find ()
o6 =9 180
ca ca L
e = 314.818 ( degrees )
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RECREATIONAL COMPUTING

In this new column of CELESTIAL COMPUTING, we will present
computer applications which are both fun and entertaining. Many
of these programs will emphasis graphics to help the wuser
visualize different types of astronomical concepts and celestial
motions. Professor Danby has graciously given his permission to
use several of the companion computer programs to his book,
'Fundamentals of Celestial Mechanics.

Our first RECREATIONAL COMPUTING article is a QuickBASIC program
called GALILEAN.BAS which can be used to graphically display the
position of the Galilean satellites relative to Jupiter. The
software supports IBM-PC and true compatible computers with CGA,
EGA and Hercules graphic displays. The program will also provide
the numerical data used to generate the graphics. The computer
algorithm is based on Chapter 36 of Astronomical Formulae for
Calculators by Jean Meeus.

GALILEAN.BAS will request the following information from the user.

> the calendar date

> the observer’s local civil time

> the observer’s time zone

> the status of Daylight Savings Time

The Galilean Menu will prompt the user with the following options.

> Display data
> Display graphics
> Continue to next day

> End this session
The Display data option provides the following information.

> x-position of each satellite (units of Jupiter radii)
b y-position of each satellite (units of Jupiter radii)

> position angle of each satellite (relative to inferior
conjunction with Jupiter)

b semidiameter of Jupiter (arc seconds)
> Julian Date of observation
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NUMERICAL METHODS

In this session of NUMERICAL METHODS, we present one of the most
powerful and useful numerical methods available for solving
problems in Celestial Mechanics. Many important astronomical
events can be predicted if we know when certain geometric
functions reach a minimum or maximum value. Function minimization
or optimization is the topic of this edition of NUMERICAL METHODS.

We will present two algorithms which can be used together to solve
optimization problems. There are many celestial problems which
can be formulated and solved as minimization problems, and we will
feature them in several future issues of CELESTIAL COMPUTING.
Representative problems and computer programs are as follows:

> The prediction of lunar occultations

> Calculating the circumstances of solar eclipses

b Predicting visibility of planetary features

> Closest approach conditions of comets and minor planets

DEMOMINI.BAS - demo program for subroutine MINIMA.BAS

This program demonstrates a procedure for calling the subroutine
BMINIMA, which first brackets the function minima or maxima, and
the subroutine MINIMA which then solves for a minima or maxima of
a scalar function of one variable.

The demo program illustrates how we can use these two algorithms

to find the time of apogee and perigee of the Moon. For this
problem, we are searching for the values of minimum geocentric
distance (perigee) and maximum geocentric distance (apogee). The

Moon’s geocentric distance is calculated with the algorithm
described in Low-Precision Formulae for Planetary Positions.

Let’s first describe the two subroutines, and then we will discuss
the programming logic used to solve this particular problem.

Syntax
CALL BMINIMA(AX, BX, CX)
Where

AX, BX, CX = bracketing triplet of X values (input as the
initial guess and output as bracketing triplet)
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Comments
It is a good idea to determine an interval which you know contains
a minima or maxima before actually beginning the search for the

function minima or maxima. This technique is called bracketing,
and involves finding three values of x (a, b and c) such that

a<b«<ec and f(b) < f(a) and f(b) < f(c)

If the bracketing triplet satisfies these three conditions, the
function has a minimum in the interval (a,c).

Only values for AX and BX are actually needed in the call to
BMINIMA. This subroutine will calculate an initial value for CX
with the equation

CX = BX + GOLD * (BX - AX)
where the constant GOLD is called the golden mean.
Syntax

CALL MINIMA(AX, BX, CX, TOL, XMIN, FMIN)
Where

AX, BX, CX bracketing triplet of X values

TOL = convergence tolerance

XMIN = minimum (or maximum) X value

FMIN = minimum (or maximum) function value
Comments

This algorithm requires a bracketing triplet which contains the
function minima or maxima. This method 1is based on Brent’s
technique and no derivative calculations are required.

The user must provide an objective function for which the minima
or maxima is desired. This function is defined in a QuickBASIC
subroutine called OFUNCTION which is coded as

SUB OFUNCTION(X, FX)

In the subroutine parameter list, X is the function argument and
FX is the negative or positive value of the function evaluated at
X. The positive value should be returned if the algorithm is used
to find a minima, and the negative function value returned when
searching for a function maximum. The subroutine MINIMA provides
all interaction with this subroutine.
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Let’s illustrate the computer code which actually cycles the
search and minimizer procedure. The search subroutine is called
from within the WHILE/WEND construct shown below. EPOCH.TIME is
the current simulation time, JDO is the initial Julian Date, and
NDAYS is the total number of days to search for lunar perigee and
apogee conditions. The variable JDATE is set to the value -999
before entering the WHILE/WEND construct, and at the beginning of
subroutine SEARCH.

If a valid minima or maxima is found, the corresponding time is
returned as the Julian Date of perigee or apogee. The current
epoch time is then set to this value plus one day in line [3]. If
a valid minima or maxima is not found, the epoch time is
incremented by one day in line [5].

[1] WHILE EPOCH.TIME < JDO + NDAYS

[2] IF JDATE >=0# THEN

[3] EPOCH.TIME = JDATE + 1#

[4] ELSE

[5] EPOCH.TIME = EPOCH.TIME + 1#
[6] END IF

(7] CALL SEARCH(TOL)

[8] WEND

Within subroutine SEARCH, the processing which occurs is shown
below. The initial bracketing triplet is defined by T1 and T2 in
lines [1] and [2]. The minima (or maxima) is bracketed by the
call to BMINIMA in 1line ([3]. Note that this subroutine always
looks in the downhill direction when bracketing a minima or
maxima. It may actually bracket a minima which is prior to the
current epoch time. If this occurs, the triplet is ignored in
line [4] and we exit from the subroutine (with JDATE = =-999).

The minima is calculated by the call to subroutine MINIMA in line
[5]. If the time of minima TX is prior to the current epoch time,
the subroutine is exited and the search continues. If the minima
is valid, the Julian Date of apogee or perigee is returned in the
variable JDATE and the geocentric distance is returned in RMOON.

[1] T1 = EPOCH.TIME

[2] T2 = EPOCH.TIME + .5#

[3)] CALL BMINIMA(T1, T2, T3)

[4] IF (T1 < EPOCH,TIME AND T2 < EPOCH.TIME AND

AND T3 < EPOCH.TIME THEN EXIT SUB
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[5] CALL MINIMA(T1, T2, T3, TOL, TX, FX)
[6] IF TX < EPOCH.TIME THEN EXIT SUB

(7] RMOON = FX

[8] JDATE = TX

This programming method may be used to solve a variety of
problems. However, the user should be aware of several important
things when formulating a minimization problem.

> The step size used in both the search procedure and the
bracketing triplet is a function of the behavior of the
astronomical event. For events which occur frequently,
small time increments are necessary, while events which
occur less frequently can use larger increments. For
example, the demo program computes events which occur twice
a month and uses a step size of one day. The PLANETS
program described in the FEATURE ARTICLE uses time
increments of 30 days when searching for perihelion or
aphelion of the outer planets, and a time step of 3 days
for the inner planets.

> The time increment for the bracketing triplet should be
approximately equal to half the search time increment.

> The convergence tolerance specified for the minimization
subroutine should be about 1D-6 to 1D-10. Please note that
smaller tolerances will require longer execution times.

> Finally, experiment! Try different time increments, etc.

Program Notes

Program DEMOMINI will request an initial calendar date and search
interval. The lunar ephemeris used in DEMOMINI is valid for time
periods between about 1680 to 2280 A.D. Be sure to keep the
combination of initial calendar date and search interval within
these dates.

The demo program will output the following information.

Calendar date of apogee or perigee

>
> Universal time of apogee or perigee
> Geocentric distance (kilometers)

>

Julian Date of apogee or perigee
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CELESTIAL BOOK REVIEW

Publications of the U.S. Naval Observatory, 34th and Massachusetts
Avenue, NW, Washington, DC 20392.

The many publications of the U.S. Naval Observatory (USNO) provide
a unique, authoritative and inexpensive source of astronomical
information. In this review we will briefly discuss several of
these publications.

b The Astronomical Almanac - this publication is the successor to
the American Ephemeris and Nautical Almanac. It is issued
annually and contains precise ephemerides of the Sun, Moon,
planets and their satellites. It also contains data for lunar and
solar eclipses and other astronomical phenomena.

b Explanatory Supplement - this publication contains the physical
and mathematical methods used to generate the information provided
in the Astronomical Almanac. The Supplement is no longer being
printed, but is available in college and technical libraries. It
is planned to print a new version in the future.

> The Nautical Almanac - this publication is issued annually and
contains the astronomical data required for marine navigation.

> The Air Almanac - this publication is also issued annually and
contains the astronomical information required for air navigation.

> Astronomical Phenomena - this publication is a preprint of the
data contained in the Astronomical Almanac. It is issued annually
and contains such information as the calendar, phases of the Moon,
visibility and configurations of the planets, eclipses, and rising
and setting information for the Sun and Moon.

> The Ephemeris - this publication contains information used for
surveying; ephemerides of the Sun, Polaris, and selected stars.

> Planetary and Lunar Coordinates - this publication contains
low-precision ephemerides of the Sun, Moon and planets.

b Astronomical Papers - these unique papers contain fundamental
astronomical data, observations, and theories which supplement the
information provided in the Astronomical Almanac. They can be
ordered by Volume number and Part number. Among these many papers
are the classic works of Dirk Brouwer, G. M. Clemence and Wallace
J. Eckert.
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> U.S. Naval Observatory Circulars - these publications are issued
periodically and contain fundamental astronomical data about solar
and lunar eclipses, phases of the Moon, fundamental coordinate
frames, etc. Many USNO circulars are free.

> Tables of Moonrise and Moonset - these are numeric tables of the
times of Moonrise and Moonset for a particular geographic
location. They are valid for one calendar year.

> Sunrise and Sunset Tables - these are numeric tables for the
times of Sunrise and Sunset for selected <cities in the
continental United States, Alaska and Hawaii.

> Sky with Ocean Joined - this publication is a reprint of the
proceedings of the Sesquicentennial Symposia of the U. S. Naval
Observatory.

The publications of the Naval Observatory also include several
computer programs.

> The Almanac for Computers - this annual publication contains
ephemeris data in a compact form for use with calculators and
small computers. This publication contains both low precision and
full precision astronomical tables. It also includes stellar
tables for 176 stars. Sections D and E of this publication are
also available on magnetic media.

> Floppy Almanac - this is a computer implementation of the
Astronomical Almanac. It is issued annually and is available for
IBM-PC’s, DEC VAX and MicrovVaX II, and IBM 370, 43xx and 30xx
mainframe computers. The main features are:

(1) Positions

(2) Physical Ephemeris of a Planet

(3) Sidereal Times

(4) Rise, Set and Transit Times

(5) Navigation

(6) Daily Configuration

(7) Topocentric Altitude and Azimuth
> The Interactive Computer Ephemeris - this computer program
provides the same information as the Floppy Almanac for the time
period from December 21, 1800 to June 7, 2049. This computer

program was reviewed in the CELESTIAL SOFTWARE REVIEW column of
the Summer 1989 issue of CELESTIAL COMPUTING.
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CELESTIAL SOFTWARE REVIEW

Program XonVu, XonTech, Inc., 6862 Hayvenhurst Avenue, Van Nuys,
CA 91406, $79. IBM-PC and true compatible computers, 5 1/4" floppy
disk. CGA, EGA, or Hercules graphics. Version 1.0.

Xonvu is an interactive computer program which will allow the user
to graphically simulate the interplanetary missions of the Voyager
and Giotto spacecraft. Seven mission control files are included
which can simulate the following encounters:

> Voyager 1 at Jupiter and Saturn

> Voyager 2 at Jupiter, Saturn, Uranus and Neptune

b Giotto at Halley’s Comet
The outer planets and their moons and rings are represented by
wireframe dgraphics. The program will also draw the nucleus and
tail of Halley'’s Comet, stars, the Sun and the spacecraft. This
program was initially developed at the Jet Propulsion Laboratory

(JPL) over a five year period from 1982 to 1987 for interplanetary
mission analysis.

The software provides seven major areas of capability as follows:

(1) Program configuration

(2) Field of view

(3) Scene complexity

(4) Observer

(5) Pointing

(6) Time and mission sequencing
(7) Animation

The following is a brief discussion about each of these features.
Program Configuration

Program XonVu allows the user to control and adjust such program
characteristics as screen dimensions or aspect, the sensitivity of
control keys, and the parameter status summary. The status
summary includes such things as star magnitude 1limit, field
orientation, etc. A Help function is also available.
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Field of View

The observer’s field of view can be adjusted between 50 and
.000001 degrees. The user can select keys for zooming in and out,
rotate the field of view, and cycle through a set of field sizes.
The program will let the user examine the current field of view
and optionally input any field size.

Scene Complexity

The scene complexity keys allow the user to toggle body grids and
landmarks on and off, input a star magnitude limit for displaying
stars, or remove all stars. There are also 5 levels of resolution
for drawing bodies. The software will run slower as the scene
complexity is increased.

Observer

The origin of the observer may be at several different locations.
For example, the observer may be on the spacecraft, in the
vicinity of the Earth, or external to the planet or comet. One
may also observe from the north pole or equator of the central
body, and change the distance from the body. The user may also
specify a central body latitude, longitude, and distance.

Pointing

The program will allow the user to point at the central body or at
one of its moons. The user may also point at a specific right
ascension and declination in space. The pointing direction may
also be offset to the left, right, or up and down.

Time and Mission Sequencing

The time control keys allow the user to control the speed of the
graphics simulation. The user may also input a specific calendar
date for the simulation, and toggle the erasure of previous scenes
on and off.

Animation

Animation can be achieved with XonVu by simplifying the graphics
scene and experimenting with such things as the time and erasure
features. A math coprocessor will make animation more effective.
A neat animation to observe is the gravity assist effect of the
outer planet on the trajectory of the Voyager spacecraft. Star
and moon occultations by the outer planets can also be animated.
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SUBSCRIPTION AND DISK INFORMATION

CELESTIAL COMPUTING is published four times per year, around the
time of the solstices and equinoxes. Both journal and floppy disk
subscriptions for the IBM-PC and compatibles are available.

The computer programs are available on both 5 1/4", 360K capacity
floppy disks and 3 1/2", 720K capacity floppy disks. Please be
sure to specify the format when ordering disk subscriptions. Both
QuickBASIC source code and executable programs are provided on the
disks. The Microsoft QuickBASIC compiler is not required to run
these progranms.

Please submit payment in the form of a personal check or money
order, in U.S. dollars, payable to Science Software. The costs to
countries other than the United States are shown in parentheses.

Send all orders and correspondence to
Science Software

7370 S. Jay Street
Littleton, CO 80123-4661

CELESTIAL COMPUTING ORDER FORM

o CELESTIAL COMPUTING journal subscription
(1year, 4 issues ) . . « ¢« + « « « . . $24.95 ($34.95)

o CELESTIAL COMPUTING disk subscription
(1year, 4 disks ) . . + « « « ¢« « « . $14.95 ($19.95)

o CELESTIAL COMPUTING back issues
( journal $6.95 ($8.95) disk $4.95 ($6.95) )
indicate issue(s) by volume and number

Please specify the disk format
o 5 1/4", 360K o 3 1/2%, 720K

Name

Street address

City, state, zip
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DISK INFORMATION

The CELESTIAL COMPUTING floppy disk contains QuickBASIC source
code and executable files, Eureka source and report files, and
MathCAD equation files. The size of the individual programs for
this issue made it necessary to provide two 5 1/4" floppy disks.
The source files are on one disk and executable files are on the
other diskette. The disks for this issue also contain an updated
version of program ECLIPSE which appeared in the Spring 1989 issue
of CELESTIAL COMPUTING.

The following is a directory listing of the files on the disk for
this issue.

BMINIMA BAS 2206 7-12-89 PLANETS BAS 68557 8-13-89
CATALOG TXT 26839 6-10-89 README BAT 19 10~05-88
CSYSTEMS BAS 42183 8-22~89 RTS2SAT EKA 3266 6-11-89
DEMOMINI BAS 13699 8-10-89 RTS2SAT MCD 9324 4-09-88
ECLIPSE BAS 35867 8~-04-89 RTS2SAT RPT 5360 6-11-89
GALILEAN BAS 11872 7-277-89 SCAN EXE 44996 7-16-89
MINIMA BAS 2760 7-12-89 VSAT BAS 29490 8§-15-89
BRUNA45 EXE 77440 9-28-88 GALILEAN EXE 13830 7-27-89
CSYSTEMS EXE 34524 8-22-89 PLANETS EXE 67482 8-13-89
DEMOMINI EXE 13288 8-10-389 QBHERC COM 6749 9-28-88
ECLIPSE EXE 35870 8-04-89 VSAT EXE 282438 8-15-89

The floppy disk also contains the following files.

> BRUN45.EXE - this is the run-time program required for all
QuickBASIC executable programs. When copying CELESTIAL
COMPUTING QuickBASIC executable programs to other floppy
and hard disks, be sure to copy this file also.

> README.BAT - this batch file allows the user to view the
Science Software disk catalog. From the DOS command line,
type README.

> CATALOG.TXT - this is an ASCII text file of the Science
Software catalog.

> SCAN.EXE - this program allows the user to scan any ASCII
file by using the cursor arrow keys and the PgUp and PgDn
keys of the keyboard. To use this program, type SCAN
filename from the DOS command line.
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> QBHERC.COM - this file is required when using Hercules
compatible graphics boards with QuickBASIC programs which
display graphics. This program must be run before
executing any graphics program. It can be invoked from the
DOS command line by typing QBHERC.

IBM and MS-DOS are registered trademarks of the IBM Corporation.

Microsoft and QuickBASIC are registered trademarks of Microsoft
Corporation.

Eureka: The Solver is a registered trademarks of Borland
International, Inc.

MathCAD is a registered trademark of MathSoft, Inc.

Hercules is a registered trademark of Hercules Computer Technology

COMING NEXT ISSUE

> Feature Article

The Stumpff/Weiss Solution of the Four-Body Problem

> Fundamental Astronomy

Computing an Accurate Position of the Earth

> Applied Astrodynamics

Calculating Mutual Visibility Between Two Earth Satellites

> Symbolic Computing

Symbolic Computing Solutions of Kepler'’s Equation

> Recreational Computing

A Computer Graphics Simulation of Three-Body Motion

> Numerical Methods

Computer Programs for Solving Non-linear Equations

Page 49




