Colour Maximite 2
User Manual
MMBasic Ver 6.00.00

Matches Firmware
6.00.00 Beta 11

Revision 1
(09 January 2026)

Geoff Graham

For updates to this manual and more details on MMBasic go to
http://geoffg.net/maximite.html

and http://mmbasic.com

http://geoffg.net/maximite.html
http://mmbasic.com/

About

The Colour Maximite 2 was conceived and developed by Peter Mather (matherp on the Back Shed Forum) who
also led the development project.

It is based on the Colour Maximite developed by Geoff Graham and uses the MMBasic interpreter written by
Geoff Graham (http://geoffg.net).

A team of people from around the world assisted with testing, advice and developing some initial games and
programs. These are Phil Boyce, Jim Hiley, Graeme Rixon, Robert Severson and Mauro Xavier.

Support

Support questions should be raised on the Back Shed forum (http://www.thebackshed.com/forum/Microcontrollers)
where there are many enthusiastic Maximite and Micromite users who would be only too happy to help. The
developers of both the Colour Maximite 2 and MMBasic are also regulars on this forum.

Copyright and Acknowledgments

The Maximite firmware and MMBasic is copyright 2011-2026 by Geoff Graham and Peter Mather 2016-2026.
1-Wire Support is copyright 1999-2006 Dallas Semiconductor Corporation and 2012 Gerard Sexton.

FatFs (SD Card) driver is copyright 2014, ChaN.

MOD file support was written by Jean Frangois DEL NERO (hxcmod.c).

WAV, MP3, and FLAC file support are copyright 2019 David Reid.

PNG support is copyright 2005-2010 Lode Vandevenne and 2010 Sean Middleditch.

The editor and file manager are based on code copyright 2016 Salvatore Sanfilippo and documentation from
paileyg@gmail.com

Marcel Rodrigues wrote the GIF decoder.
Maury Quijada wrote the image resize and image rotate code.
The CRC calculations are copyright Rob Tillaart.

The compiled object code (the .bin file) for the Colour Maximite 2 is free software: you can use or redistribute
it as you please. The source code is available via subscription (free of charge) to individuals for personal use or
under a negotiated license for commercial use. In both cases go to http://mmbasic.com for details.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY, without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This Manual

The author of this manual is Geoff Graham. Version 6.00.00 updates by Gerry Allardice. It is distributed under
a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Australia license (CC BY-NC-SA 3.0)

There are a number of other PDF files with details of more advanced programming features that are referred
to within this manual, these are included in the CMM2 firmware download and are also directly linked via
hyperlinks.

Page 2 Colour Maximite 2 User Manual Page 2

http://geoffg.net/
http://www.thebackshed.com/forum/Microcontrollers
http://mmbasic.com/

Contents

a0 13 Tox 1o o TSP 7
QUICK STAIt TULOTIAL.....eue e et e e e e et e e et e e saa e e eaaeeeaaeeees 8
(@0 g agF= T B = o] 1 1] o] PP OSUPRRUPUPR 8
YOUE FITSE PIOGIAIM ...t ettt e st e e et e e et e e e s tbe e eabeeebaeeseabeeesteeessbeeestbeesnraesnrnbeeans 9
Something More COMPICAIEA.cciuiiiiie et e e s be e st e e e s be e e str e e sabeeenreas 9
Colour Maximite 2 GENEratiON L.........i i e e e e e e e e e e e e e eeenes 10
EXTEINAL OSCIHIALONeiiiiii ittt et e e et e st e e et e e e ba e e ss sha e e sabeeeteeestbeeebeeesreeeeeens 11
Y o0 T] (=T = Vo R 11
Colour Maximite 2 GENEIALION 2........uuiiiieiiie et e e e e et e e e e et e e e e eraaaeaeenes 12
Y o0 T] (=T = Vo S 12
POWET SWItCh OFIBNTALIONviiiiic e et e et e e st b e s be e e sba e e st sbeeesabeeesteeestbeesnteas 13
High Accuracy Real TIME CIOCK.........coiiiiiiii ettt ettt be et e e e sar e e s e staaesabeeeteas 13
ESP-0L IMOUUIE ...ttt ettt et e et e st e e bt e s et e e neess e e seeseenbeereeteaneentenneane e nneeneas 13
HarAWAre FEALUIMNES......ciiiii et e et e e e et e e e e e et e e e e aaaa e e e aeraanaeaeenes 14
STM32H74311T6 Cortex-M7 32-Dit RISC CPUcuiiiiieiieiieie st 14
VGA MONITOT COMNEBCLONviiiiieeciie ettt e ettt e e et e s et e e et e e e e e beeebeeestbeeasbeeeabeeesssbbeesaaaeanbeeestbeeanraeans 14
USB KEYD0AIrd CONMNECION.ciiiiiiiiie ittt ettt et st e e e st e e st e e e ebe e e sabe e e bae e st sbeeesabeesrbeeestbeesateas 14
Power & Serial ConsSOle CONMECIONcuiiiiiiiitie ettt e st s e st e e st e e e be e s st be e s rbeeebeeaeebeeesaeas 14
Y T U 7= T U o] o] o SO SOPRSSR 15
Y AN (o [To o] 4] 1-Tv1 o] SO USSP RROUPRROUPPRROTS 16
Power & SD Card ACHIVILY LEDS.........cooiiiiiiiiie ettt ettt ettt et e s rre e e saae e enbeeeteas 16
] B O T (o I @o] o1 1-Tol (o] S OSSO P R UPROUSRPUPPR 16
EXTEINAL 1/O CONMNBCIONiii ettt ettt et e e et e e e st e e s ab e e e st b e e eab e e en sabeeebeeesbbeesnbeeesreeeaaeas 16
Wii Nunchuk and Wii ClassSiC CONMNEBCIONccuiiiiiiiiee ittt et et e e s rae e s be e s stbe e sabeesarebeas 18
QIS0 0 L= LN =TS T=T < PSSR 18
IR RBCBIVET ... ettt ettt e e et e e e ebe e e e ab e e eate e e sbbe e sabeeeabeeseebeeeatbeessbeeeabeeesabeeastsbaeanteeentreeas 18
FIrmware UpPIOad SEIECL............ooiii ettt e be e et e e e be e e sbb e e sabe e s ateeeeateas 18
T (U QN ST =T YRS OTS ORI 18
RESBE SWILCI ...t et e e st e e et e e e be e e e ebee e etb e e erte e e abbe e aabe e et abaeeteeenteas 18
USING MIMBASIC.....cettiieiiiiie et e et e e e et e e et e e e e e et e e e e ea e e e e eata e e e e aasaeeeaessaeaaeenes 19
Commands and Program INPUL ..ottt e e e e st e e s te e sbb e e st e e e s beeebeeesraeeanns 19
Editing the COMMANG LINEooiiiiiiie ettt e e e et e st e s tbe e be e e s bb e e s abe e e ssbeeebeeestbeesnteas 19
Console KEYDOAIA/DISPIAYcoiuiiiiiiiiiie ittt ettt et e et e e st e e et e e sabe e e sbe e e st sbeeesaeeesnteeesreeeanes 19
KEYDOAIT SHOMCULS......ectiieiie it e e e s e e et e e st e e s beeebaeseebeeesbteesnbeeesbbeesaaeeentnteas 19
Line Numbers and Program STFUCLUIEc.ueeiieiiiie ittt ettt ettt e e e st e e e be e stae e snbe e e sbaeesasbreeaneas 20
All Programs Are Run From the SD Cardc.cooiiiiiii ittt ettt ae e v 20
SHALUS LLINB. . eii ittt ettt ettt e et e e st e e et e bt e e eabeeebe e e s tbe e e beeebeee e e abeeeaabeeabreeatbeeabeeebebeeeabeeeaareeanes 21
RUNNING PIOGIAIMS ...ttt et e et e e e et e e e be e e stbe e et e e e sbaeees sheeesabeeebeeestbeeebeeenreeeseens 21
(0 (RIS 0] T TSP OPRTO 21
Standards and ComMPAtiDIIYooiiiiii et 21
SAVEA VANADIES ...ttt e et et e et b e e e eab e e e be e st b e e aabe e e be e e e e aree e e 21
BN 2 1T T T PO P TSP RRUPPROTR 21
VAV ol a o (o To I T4 1= P TSRO P PO ROUPRROUPPRPOTS 22
PIN SBCUITY ..ttt ettt et e e st e e s e e te e e e tb e e e te e e stbe e eabaeebeeseeabeeeaabeeasbeeesbbeessbeeantabeeanbeeetnas 22

Page 3 Colour Maximite 2 User Manual Page 3

TN SEIIAI CONSOIE. ...ttt ettt e e e e e et e e e e e e e e eeeeeeeesnnnnnneeeeenneeeeeeeeeeeeeeeennnnes 22

RESEIING IMIMIBASICecoiviiiitie ettt ettt ettt e et e e st e e et e e e s bbe e e abe e e s abeeesbeeestbeeesbeeesreeeanaens 22
[TS F= T = T [PSPPSRI 23
Y [U7 T o] o] o SO SOPPRSRR 24
L[S Yo =TT o T =T [o) PSPPSRI 25
Y [U7 TU o] o] o S SOUPSOPRSRR 26
Colour Coded Editor DISPIaYccueiiiiiii ittt ettt e st e e st e e s e e e e e rbe e e be e e rae e aans 27
L T L0 4o] =SSR 27
Y 1=T g0 Y =T S SUPUPSPRSRR 27
Variables and EXPreSSIONScoiiiiiiiiiiii et e e e e e 28
R T 0] SRS 28
(001011 -1 | SO OO P PP PU R UPPPRROPPRP 28
(@] I (@]V B =Y] OSSR 28
(@] I8 (0 AV = 0 0 o OSSPSR 29
DAY o I 0 L A ST SS USSP 29
STATIC ettt ettt et e e e ete e s e e b e e st e b e e Rt et e e Re e Rttt eR e e Rt e Re Rt e te R e et e eRe e Rt e e ateeneenenreenrenren 30
010)V SRR 30
SPECIAl CharaCterS IN STIINQS.iiiiii i ittt et e e e e s e st e e e be e e stb e e sabeeesbeeesaee e esseeeanbeeesraeeanns 30
EXPreSSIONS AN OPEIALOISeciiuiei ittt e ittt ettt e e eteeeette e ebe e s st e e sabeesbeesesbeeeabeeestbeeabeeessseessssbeesnbeeasbeeestbessateas 31
Mixing Floating POINt and INTEOEIScoviiiiiee ittt e et e st e e st be e et e e sate e s bee s e e sbeeeaaeas 32
B4-DIt UNSIGNEU INTEOEIS ... eei ittt ettt et e e e et e e e e e be e e e bt e e stbe e e sbbeesabeeeabe e e anbaeesbeeesabeeesteeeens 33
Subroutines and FUNCLIONS.........oouuiiii e e e e e e e e et e e e e eaaanas 34
SUBTOULINES. ...ttt ettt et e e ekt e st e et e e E e e st e s e e ste e s e ene e e st e enteente e beenneeanee e enseenneennee e 34
LOCAI WATTADIES. ... ettt ettt et et e st e st et e e sreeeneeenee e st e e be e beeeneeane e enneennen 34
FUNCEIONS ...ttt ettt et et e et e et e e st e st e ke e Rt eene e e e st e e se e s e e eEeeeneeenteente e aneeeneeenneente e e 34
Passing Arguments by Reference or DY ValUBccviiiuiiiiii ettt 35
e Y Ta Lo AN ¢ - |2 T PP OTRUSTOTRRO 35
L T4 |V | A USSP URRRUPRTO 35
o0 651 T o SRS TSSR 36
EXAIMIPIES ..ottt e et e et e et e e e e be e e e e be e e be e e etbe e e be e e beeeatebreeataeeaabeeeteas 36
GraphiCS FUNCHIONS. . ..ot e e e e et e e e et e e e e eaaanas 37
SCIEEN COOITUINALES ... eteeetee ettt etee ettt ettt et et e st e est e e st et esseesseeeseeeseeanbe e seense e anteeseeenteenteenreeaneeaneeannseens 37
READ ONIY ValADIES ... et e e st e e et e e e e e be e e s te e e sabe e e ataeesaeeeeneans 37
O] o1 S SSTSSR 37
0] 1 £ T PSP P PP PUPRPN 38
Drawing COMMENASuiiiiiiiiie ettt et e st e st e e st e e et b be e sabeeabee e st beesbeeeabse e eabseeasbeeantaesstbeessbeeanreeeas 39
EXample 0f BaASIC GIaphiCScoiiiiiieiiiii ettt et tte et e e st e e st e e e sabeeebeeestbeeenteas 40
(01 (=0 1<) 4 SO 40
LI T 0= U 0 S = R 41
DiSPIAYING IMAGESveieiiee ettt ettt s e et e st e e e e e be e e sate e eabeeesbbeeesbeeeabs e e enbeeesbbeesabeaestbeesaaeeensateas 41
Advanced GraphiCs TULOTIALcccuiiiiiei e et et ee e e be et e e e et sbeeesrae e srbeessraeeas 41
[C18] 100 1 0] USSR 41
B ENQINE. . ettt ettt ettt ettt et e et e e e et e e e be e e ahbe e e beeehee e eabreeahbeeateeeatbeeabee et beeeabeeearreeanns 41
S B I OF= (o IS o] oL o S 42
Program Management COMMANGS..........cveeiiuiiiiiieeiie e s et e et e et e st be e s te e e ste e e e sbeeestbeesrbeesstbeesabeeestnaeeanbeeensnas 42
File ACCESS WININ @ PIOQIAMiiiiii ittt e st e et e e e tb e e st be e et e e et beeesbeeestbeeenteas 42
File and DireCtory ManagEmMENT...........coiviiiiiiiitie ettt eiee e sie et e et e e s te e e sbe e e beeestaeestbe e e sbseesaraeaesaeeeanreeeteas 43

Page 4 Colour Maximite 2 User Manual Page 4

o Y AN o ol T =T PO TR SRR 43

L0Ad QN0 SAVE IMAGESveieiieeciie ettt ettt ettt s e e e et e e s te e e e e steeeeabeeeebeeestbeeesbaeesbsbeeesbeeeasbeeetaeesseeeanraens 44
SEAUENTIAL FIIE ACCESS ...ttt ettt et e e e e e bt e e eab e e e e be e e sabe e s abe e e s baeesbeeestbeesbeeesreeeaaes 44
LT To o] T T Lo o1t SRR STT 45
8o o T T 1 o 11 | TSP 46
Playing WAV, MP3 and FLAC FIlESocoiiiiiie ettt ettt st e b aaeas 46
BACKGIOUNG IVIUSIC......eeiiiie ittt ettt et s e e e st e e st e e e ate e e sbbe e esbeeeabe e e eabeeesbbeeanbeaestbeesaneeensneeas 46
GENEIALING SINE WWAVESuviiitiei ittt ettt et et e e st e e e e tb e e e st e e e s be e e sabe e e bee et beeesbeeesabeesabeeesteeeanees 46
SPECIAlISEA AUTIO OULPUL. ..ottt ettt e e et e e e st e e sabe e s sbb e e sabeesabeeseabeeesteeesnbeeesreeeanns 46
USING PLAY Lottt ettt e e e et e e e be e e ehte e s be e e abbe e aabee s e eabeeeabbe e st be e e beeeaabeeaatabeeareeeateas 47
ULHTIEY COMIMANGS.eiiiiiie it et e e eb e e st e e e be e e sbb e e sabe e et abeeeabeeesbbeesabeeesbbeesaeeeseaneens 47
USING the 1O PINS ittt e e e e e et e e e et e e e e e eat e e e e astaeeeaersanaaaeenes 48
DIGITAL INPULS ...t et e et b e et e e s a e e et e e e shbe e sabee e e eabeeeabbeessbeeebeeesabeeanbebeeanbeeenaeas 48
ANGIOG INPULS ..ttt e e e et e e e sta e e esbe e e s tbe e sate e eatabeeeabeeebeeestbeeebeeeabraeseareeeaaaeeas 48
COUNTING INPULS ..ttt s e et e e et e e e s tt e e e abe e e sbbe e sabe e e bee e et beeesabeeasbeessbeeessbaeanbeeeeebeeenns 48
DIGITAI OULPULSvvee ettt ettt st e e st e e e e st e e sab e e e teeesabe e e beeeaaebaeesaseeasbeeeabeeessbaessbae e ebeeeaaes 49
LU e VAV o L1 Y, T LU = o SRR 49
L U 0SSR 49
SPECIAI DEVICE SUPPOIT ... it e e e e e e e e e e e a e e e e eaaa e e e eeaannas 51
Infrared REemMOte CONLIOI DECOUEToeiieeiiieiieeie et ettt et e et e st e areeaneeeseeeenneeaneeaneeas 51
Infrared Remote CONtrol TIaNSIMITLETooviiieiie ettt e et eesreenne e eneeeneeas 51
MEASUINING TEMPEIATUIEeeviieiiee et e et ettt e et e e st e e et e e st e e e bee e s beeesbeeessbeeebeeesabesssbaesessbeeeabeeessbeesateeesanens 52
Measuring Humidity and TEMPEIALUIEc..eeiiiiiiie ettt ettt st e e s e b e e e be e e stee e s rbe e e sbeeesaee e e enes 52
MEASUIING DISTANCEeiiiieiiii ettt et e s e e st sht e e sab e e e beeesbbe e e abeeeabaee s esbeeessbeeasbeeestbeesabeesnrebeas 53
R L Sy 2T o] 0 RS PSEPPPRRR 53
HODDYLIONIC IMOUSE SUDPPOIT ...ttt ettt s e e et e e e be e e sbbe e sabe e e sbbeesabe e e e anbeeebeeestbeeenteas 54
L0 N T T o1 S 54
Game Playing FEALUINES.........uuiiiiiii et e e e e e e e e e e e et eeeeaaanas 55
VGA Resolution, Colour Depth and PAgEScccuiiiiiiiiiie ettt sve e ts e te e e etre e stbe e s sbaeesaneeanas 55
SCIOIING QNG SPIIES ... ittt ettt e e et e e e e et e e e be e e st be e s rbeeeebeeesaebeeessbeeasbeeestbeeasbaeenteeens 55
DiSPIAYING IMAGESviieiiie ittt ettt be et e st e e e e st e e sabeeaabeeesbbeeesbeeeabebeeenbeeesbbeessbeaestbeesaaeeensateas 55
0] 1 £ T PSP P PP PUPRPN 55
o N 1A Lo AN (o [o T PO U R OTPTSTOPRO 56
KEYDOAIT KBYS ... ettt ettt e et e e e e et e e et e e e be e e sabe e e beeeabebeeeaabeeesbeeeabbeeeabaeebae e e ateaeaaes 56
Wii NUNChUK and ClassiC CONTIOIIEIS.oiiiiiieiieiiieeie sttt enee e et e e enee e e neenes 56
(Lo U aTo e oo =1 1 4 TP RUPPPSSPPPPN 57
WAETADIES ... ettt e et et e et e E e Rt Rttt et e R e e Rt e e R et e e e nReeaRe e Rt e enteenneenreenree s 57
L [0 T a o oL | PO OTPTSTOTRTO 57
GraphiC COMMANGSveiiitiee ittt e et et e et e e et e e e et e e e ae e e e etbeeesbeeestbeessbeeebeeesssbeeessbeeasbaeestbeesnbaeereeeaans 57
0] 1 £ T O OO U PP PUPPPTN 57
2 0 PSSR 57
SIS ..tii ittt ettt ettt ettt et e ettt e b e e et e beeebee e ettt e e beeeateeeaAbeeeeateeabeeeatbe e i beeeateeeaaebreeaareeabeeearreeanes 58
K10 18 1N 2 4o I 1O NS 58
SD Card and File Related COMMANTSoiuiiieeiieiie e ee e et e st e sreesreeeneeaeeene e anee e 58
SPECIAI DBVICES ..ttt ettt et e s e et e et e e e stb e e e abe e e e be e e shbe e e bee e et ebeeeaabeeaabeesabeeesabeeabeeeeebeeeans 58
CONFIG COIMMANGS ...ttt stie e e e st e teestee e asee e teess e aseeaseeaseeasse e beeaseeaseeeenseenseenseesreeaneeanaeaneeansn 59
g ol gl Tl | [T o TR PSSR SROTRRO 59

Page 5 Colour Maximite 2 User Manual Page 5

RaANAOM NUMDBEE GENEIALONo e e 59

[0 o TS 1 1 0o 1< PSPPSR 60
LONG SEHNG VaATaDIES ... oo et e et e ettt e e st e e e be e et be e s beeenteeens 60
LONG StNG COMMANASccuiiiiiie ittt s b e e et e e e s be e e ste e e stbe e s ebeeesabeessbaeaessbeeesteeessbeeeateeesaeens 60
LONG SEHNG FUNCHIONS.eiiiiii ettt s et e et e e et e e s tbe e e be e e sbee e satbbeesabeeesbeeesbbeesabeeenteeens 61

MMBASIC CharaCteriSHICS ... i iiiiiiieeieiie e e e e e e e e e e et e e e e eateeaeenes 62
IMplementation CharaCteriSICSueiiiuiii ettt e et e e e st e e st be e s ste e e sar e e s e srbaesnbeeesrneeas 62
(@0 0] T L] o1 1§V Z TSP RRTPRRPPR 62
MMBasic Firmware Memory Map for the CMM2 Implementationccccoveeiiiiiiiee i 63

Predefined Read Only Variables ... 65
DT o [T ([o OSSP P SRRSO 65

(O 01T = 1 (0] £ TP 69
Numeric Operators (FIOAt OF INTEOEI)vviiiiee et ettt e e s be e e bee et ebre e eaeas 69
Y [0 @] oL o] £ TSP PTOTSPPRRPR 69

(@ 0] 10 1SR 70
DTl o [T ([o P PP 70

(@0] 1] 4= o o £SO UPPPSSPPPPN 76
DT o [T ([o OSSP P SRRSO 76

L Lo o 1P 133
DELAIIE LISTINGveeiviiiitie ettt et e e st e e s et e e s ab e e e be e e stbe e e beeeabee e e sbeaesabeeesteeessbeeabaeesareeeans 133

Obsolete Commands and FUNCLIONSoiiiiiiiiii i e e e e aenes 151

Appendix A — Serial COMMUNICALIONScouuuiiiiiiiie e e e e 152

Appendix B — 12C COMMUNICALIONSuuuieiiiiiiee ettt e e e e et e e e eaa e 155

Appendix C — 1-Wire COMMUNICATIONS........uuuiieeiiiiie et e e e e e e e e e aa e e e eaa e 157

Appendix D — SPI COMMUNICALIONS.cciiiiiieee it e et e e e e e et eeaena e 158

y Y o] o] gL b R o €| (=3 UPPPSP 160

AppendiX F — TUIIE GraphiCS.......ccoiiiiiii e e e 162

Appendix G - Cyclic Redundancy Check (CRC)........couuuiiiiiiiiiiie e 164

Appendix H - Regular EXPreSSIONS........ciiiiiiiiie ittt e e e e e e e e e aaaa e 167

Appendix | — Special Keyboard KEYS...........uiiiiiiiiiiiciieiis et 169

APPENIX T — CAN SUPPOI . ..ttt ettt e et e e e e e e e e e e e ea e e e e eaa e e e e ensaaeeas 170

Appendix K — Loading the FIrMWATIE..............iii it 174

Page 6 Colour Maximite 2 User Manual Page 6

Introduction

The Colour Maximite 2 is a small self contained computer inspired by the home computers of the early 80's
such as the Tandy TRS-80, Commodore 64 and Apple Il. It includes its own BASIC interpreter and powers up
in under a second into the BASIC interpreter (there is no operating system to boot). The emphasis is on ease of
use and, as a result, a first time user could enter a small program and have it running within minutes.

While the concept is borrowed from computers of the 80's the technology used is very much up to date. The
CPU that powers the Colour Maximite 2 is an ARM Cortex-M7 32-bit RISC processor running at up to
480MHz with 2MB flash memory and 1MB RAM. This processor includes its own video controller and
generates a VGA output at resolutions up to 1920x1080 pixels and with up to 24-bit colour.

The Colour Maximite is designed to be simple and fun. The assembly instructions and the firmware are
completely free and the parts can be found from multiple sources. It can be assembled in an hour or two and
will provide endless hours of fun.

The basic features of the Colour Maximite 2 are:

o Low cost affordable fun. The firmware (including the BASIC interpreter) is completely free. The main
PCB is easy to assemble with thru hole components. The CPU and support circuits are contained on a
fully assembled plug in board costing US$30. The firmware can be loaded using free software so a
programmer or special equipment is not required to get started.

o Instant startup into the BASIC interpreter. Program space is 516KB, enough for huge and complex
programs (typically 25,000 lines or more) while general RAM used for arrays and buffers is over 5MB
(enough for enormous arrays).

o Full featured BASIC interpreter with double precision floating point, 64-bit integers and string
variables, long variable names, arrays of floats, integers or strings with multiple dimensions, extensive
string handling and user defined subroutines and functions. Typically it will execute a program at
270,000 lines per second.

e Rock solid VGA output (or HDMI with an inexpensive converter). With 15 program selectable video
resolutions from 1920x1080 pixels to 240x216 pixels and up to 24-bit colour (16 million colours).

e USB Keyboard and Mouse support. The keyboard can be wireless (with a USB dongle) or wired and
have US, FR, DE, or UK key mappings. Mouse can be USB or dual USB/PS2 types.

o Stereo audio output can play WAV, FLAC and MP3 files, computer generated music (MOD format)
and robot speech and sound effects as well as generate precise sine wave tones.

e A full screen editor is built into the firmware. It includes advanced features such as colour coded
syntax, search and copy, cut and paste to and from a clipboard with full mouse support. With one key
press the program can be saved and run. If an error occurs another key press will return to the editor with
the cursor placed on the line that caused the error.

o Full support for SD cards including editing and running programs on the SD card as well as opening
files for reading, writing or random access. Cards up to 128GB formatted in FAT16, FAT32 or exFAT
are supported and the files can also be read and written on personal computers running Windows, Linux
or the Mac operating system. A graphical file manager is included in MMBasic.

e Programs can be easily transferred from another computer (Windows, Mac or Linux) using the SD
card, XModem protocol or by streaming the program over the serial console input.

o Extensive features for creating computer games. These include multiple video planes, support for
Blits and Sprites, the ability to create computer generated music, sound effects and computer generated
speech. The Colour Maximite 2 includes full support for the Wii Nunchuk and Wii Classic games
controllers.

o Battery backed clock will keep the correct time, even with the power disconnected.

o Twenty eight input/output pins with 12 capable of analog input. Built in support for an IR remote
control and temperature and humidity sensors. Communications protocols include 12C, asynchronous
serial, RS232, IEEE 485, SPI and 1-Wire. These can be used to communicate with many sensors
(temperature, humidity, acceleration, etc) as well as for sending data to test equipment.

o Power is 5 volts at 220mA typical from an USB port or charger.

Page 7 Colour Maximite 2 User Manual Page 7

Quick Start Tutorial

The following assumes that you have built or purchased the Colour Maximite 2, loaded the firmware, attached
a keyboard and VGA monitor, powered it up and tested that it runs. At that point you should have the
command prompt (a greater than symbol ">") displayed on the monitor.

Command Prompt

Most interaction with MMBasic is done via the console at the command prompt (ie, the greater than symbol (>)
on the console). On startup MMBasic will issue the command prompt and wait for some command to be
entered. It will also return to the command prompt if your program ends or if it generated an error message.
When the command prompt is displayed you have a range of commands that you can execute. Typically these
would list a program (LIST) or edit it (EDIT) or set some options (the OPTION command). Most times the
command is just RUN which instructs MMBasic to run the program.

When entering a line at the command prompt the line can be edited using the arrow keys to move along the
line, the Delete key to delete a character and the Insert key to switch between insert and overwrite. The up and
down arrow keys will move through a list of previously entered commands which you can edit and reuse.

Finally the “Enter” key will cause MMBasic to execute whatever is showing at the command prompt.

Almost any command can be entered at the command prompt and this is often used to test a command to see
how it works. A simple example is the PRINT command, which you can test by entering the following at the
command prompt:

PRINT 2 + 2

and not surprisingly MMBasic will print out the number 4 before returning to the command prompt.

Here are a few more things that you can try out. What you type is shown in bold and the Colour Maximite's
output is shown in normal text.

Try a simple calculation:

> PRINT 1/7
0.1428571429

See how much memory you have:
> MEMORY
Flash:
OK (0%) Program (O lines)
566K (100%) Free

RAM:
OK (0%) O Variables
OK (0%) General
24800K (100%) Free

What is the current time?

> PRINT TIMES$
10:04:01

What is the current date?

> PRINT DATE$
25/04/2020

Count to 20:

> FOR a = 1 to 20 : PRINT a; : NEXT a
1234567 89 10 11 12 13 14 15 16 17 18 19 20

Page 8 Colour Maximite 2 User Manual Page 8

Your First Program

To enter a program you can use the EDIT command which is described later in this manual. To get a quick feel
for how it works, try this sequence:

o Make sure that you have a properly formatted SD card inserted into the SD card slot.
e At the command prompt type EDIT ""hello.bas" followed by the ENTER key.
o The editor should start up and you can enter this line: PRINT ""Hello World"

o Press the F1 key in your keyboard. This tells the editor to save your program and exit to the command
prompt.

e At the command prompt type RUN ""hello.bas" followed by the ENTER key.
e You should see the message: Hello World

Congratulations. You have just written and run your first program on the Colour Maximite 2. If you type
EDIT again you will be back in the editor where you can change or add to your program.

Something More Complicated
A more interesting program would be to fill the screen with coloured bubbles.

For this you need to know a little more about the editor. If you have used any full screen text editor in the past
you will find the operation of this editor familiar. The arrow keys will move your cursor around in the text
while the home and end keys will take you to the beginning or end of the line. The delete key will delete the
character at the cursor and backspace will delete the character before the cursor.

To enter the bubbles program you should use the command EDIT "bubbles.bas' at the command prompt.
Then type in this short program:

DO
r = RND * 255
g = RND * 255
b = RND * 255
CIRCLE RND * 800, RND * 600, RND * 100,,, O, RGB(r,g,b)
PAUSE 5
LOOP

Press the F2 key which will save your program and automatically run it.
You should see the screen continuously fill with hundreds of coloured
bubbles as shown on the right.

If there was an error you will get a message with the line number and a
description of the error. If you then re-enter the command EDIT you will
be taken back into the editor with the cursor positioned on the line that
caused the error. Correct the error and then save/run the program by
pressing F2 again.

In this program we first set three variables (r, g and b) to random
numbers in the range of zero to 255. The random number generator is called RND and it returns a random
number in the range of zero to 0.999999. We multiply it by 255 to give us a random number from 0 to 255.

Then we draw a circle at a random position (again using the random number generator) with a random radius
using the three colours previously calculated (ie, r, g and b). This code is contained within a DO...LOOP
which instructs MMBasic to keep repeating this code (and drawing bubbles) forever.

You will notice that while this program is running you will not get the command prompt back. This is because
MMBasic is now busy executing your program and drawing coloured bubbles. You can stop the program
whenever you want by entering CTRL-C at the console and you should get the command prompt back again.
The purpose of the PAUSE 5 command in the program is to slow down the program so that you have time to
see the bubbles. To see how fast the Colour Maximite 2 can really go you could go back into the editor and
change that line to PAUSE 0 and then rerun the program.

For a more in-depth tutorial and a description of programming in BASIC you should download and read
Programming with the Colour Maximite 2 which can be found at http://geoffg.net/maximite.html (scroll to the
bottom of the page).

Page 9 Colour Maximite 2 User Manual Page 9

https://fruitoftheshed.com/wiki/lib/exe/fetch.php?media=mmbasic_hardware:cmm2:programming_with_the_colour_maximite_2.pdf
http://geoffg.net/maximite.html

Colour Maximite 2 Generation 1

This version uses a plug in CPU module made by Waveshare. The module carries the ARM Cortex-M7 32-bit
RISC processor, 8MB SDRAM and various support components. The plug in board concept eliminates the
need to solder the ARM CPU with its 176 pins and 0.2mm gap between pins and is therefore suitable for home
construction.

The CPU module has two connectors on its top, one a micro USB the other a multi pin header. Both of these
are only needed for firmware development and are not used in normal operation as a BASIC computer. For
normal operation all the jumpers on this board should be removed, the power switch should be set to "5VIN"
and the BOOT CONFIG switch should be set to "Flash”.

The following image illustrates the major connectors and features of this design:

Power &
usB Serial Stereo Temperature External 11O VGA Monitor
Keyboard Console Audio Sensor Connector Connector

Reset
Switch
Backup
Battery Firmware
Upload
Select
USB - Serial
Converter
Waveshare
CoreH743I
CPU Board
Note that the

STM32H743IIT6
Cortex-M7 32-bit
RISC CPU

final PCB layout
will vary slightly
from this image

IR Remote Nunchuk Power & SD Full Size SD Power
Receiver Connector Activity LEDs Card Slot Switch

Many suppliers are offering a
fully assembled version of this v
design. These do not use the plug Py XTI TTITITITTT I TTTTI
in module concept, instead the i ‘Gi d,‘iﬂ‘
ARM Cortex-M7 processor and ‘
its supporting components are

soldered directly to the main
PCB. This makes sense for a
machine assembled board and is
cheaper to supply.

The layout of this board is
essentially the same except that
there are no jumpers as on the
Waveshare board.

Some items are positioned
differently as noted in the image
to the right.

B ess-r-avene

Reset Switch
External Oscillator

Temperature Sensor

Firmware
Upload Select

Page 10 Colour Maximite 2 User Manual Page 10

External Oscillator

The main processor clock comes from an 8 MHz crystal on the Waveshare board which is driven by the on chip
oscillator in the ARM processor. This arrangement can have some jitter on the clock which in turn may cause
jitter or instability in the VGA image. However, in most cases, this design works well with the maximum
800x600 pixel VGA video resolution provided by the early firmware releases.

However, with firmware upgrades, it is now possible to generate a VGA image at much higher resolutions and
these may display an instability caused by this jitter. The solution is to fit an external 8MHz oscillator to
replace the crystal and oscillator used by the Waveshare board. If the higher resolutions are not required then,
in most cases, this modification will not be required. This issue does not affect the single board versions (ie,
fully assembled without the Waveshare module) as they use an external oscillator module.
Note that the following will require a level of skill in soldering surface mount parts.
The following parts are required:

1 SMD 1206 100nF ceramic capacitor

1 8MHz oscillator in 5.0 x 7.0 mm SMD package (QX7 XO 25ppm). Eg, RS Stock Nbr 813-6194 .
The solder pads for these are located under the Waveshare board near the left hand 80 pin connector. The
oscillator has a dot identifying pin 1 and this needs to be aligned with a small dot on the PCB silkscreen. Take
care to not damage the 80-pin connector nearby and use the minimum of solder so that the solder does not short
to the case of the oscillator. The capacitor should then be installed near the oscillator.
Nothing more is required and it is not necessary to remove the 8 MHz crystal from the Waveshare board. On
power up the Colour Maximite 2 should operate as normal.

Mouse Interface

- +5\/

A PS2 mouse or a dual USB/PS2 mouse with a PS2 adapter 2 4.7k
can be connected via the rear 1/0 connector. DATA - Pina2
The mouse CLOCK (pin 5) connects to pin 33 of the I/O S
connector and mouse DATA (pin 1) connects to pin 32. Both 5V 3 [TeRoue
must have 4.7KQ pullup resistors to +5V. 4 cLock 347K

. S5—— 4 o~ pins3
The mouse GND and +5V pins should be connected to the
ground and 5V pins on the 1/0 connector. 6

MMBasic has built in support for the mouse via the MOUSE() function. The mouse can also be used in the file
manager and editor to select text, etc. A full description is provided in the next section of this manual.

The other features of this board are common with the Colour Maximite 2 Generation 2 and are described in the
later section (Hardware Features).

Page 11 Colour Maximite 2 User Manual Page 11

Colour Maximite 2 Generation 2

This is an upgraded design with three main improvements over the first generation.

1. Ituses a larger RAM chip 32MB vs 8MB) which is used to support the top VGA resolution of
1920x1080 pixels, 24-bit colour depth and provide more RAM for BASIC programs.

2. An 8-bit digital to analog converter is used for each colour channel allowing the Generation 2 computer
to display true colour 24-bit images.

3. The PCB is a 4 layer design with all components mount on the top side. This makes it more suitable for
machine assembly.

This version also has connectors for a second Wii controller and a PS2 mouse and the rear 1/0 connector is
inverted to make it more convenient to use connectors and cables designed to suit the Raspberry Pi Hats.

This diagram lists the key hardware features:

USB Power & STM32H7431IT6 External 1/0 VGA Monitor
USB Mouse Keyboard Serial Cortex-M7 32-bit Connector Connector
(BOTTOM) (TOP) Console RISC CPU

N " - ‘ /

USBE - Serial
Converter 9y3 SRe_ste:‘
= witc
‘ 5
\ ; 1 ﬁ E]ma
6 ;L'] Em Backup
. Erps |"s [Battery
Hobbytronics F5) P T
Mouse Controller Rﬁi A2 L]H"’L
. LI =
(optional) - = [ﬁ o ::C%.E' : Temperature
i = ol Sensor
ReS ﬁsuEI R26 e
Select USB or g g He
L 2 R]l. R27 ¥1 L Rr4
PS2 Mouse i @ & —— "I,]’ 'ﬂ ﬂ{ Full Sized SD
off] p2e L Card Slot
II =N ﬁ =
ESP-01 WiFi

Power Switch
Orientation
Jumper

Module Socket

High Accuracy
Clock (optional)

Recelver Wii Controller

€
o
&
"
3
o
@
]

Power & SD Firmware Stereo TR

Activity LEDs Upload Select Audio

Mouse Interface

The Generation 2 design supports two types of mouse interface. The first is a full USB mouse and for this to be
implemented a Hobbytronics mouse controller chip (https://www.hobbytronics.co.uk/usb-host-soic) needs to be
installed at the position for IC5 along with the associated supporting components. The mouse then connects to
the USB mouse socket (the lower socket) on the rear of the Colour Maximite 2.

The second type of support is for a dual USB/PS2 mouse. Most wired mice will automatically switch between
USB and PS2 modes and many come with a USB to PS2 adapter. This adapter simply signals the mouse to
switch to PS2 mode via a pull-up resistor and provides the physical PS2 connector. A typical example that has
been tested on the Colour Maximite 2 is the Microsoft Basic Optical Mouse which is low cost and widely
available.

To use a dual USB/PS2 mouse IC5 must not be populated, and all four solder jumpers marked “select USB or
PS2 mouse” (diagram above) must be joined with a solder blob. The mouse then plugs into the USB mouse
socket (the lower socket) on the rear of the Colour Maximite 2. A USB to PS2 adapter is not required (the
Colour Maximite 2 will automatically switch the mouse into PS2 mode).

Page 12 Colour Maximite 2 User Manual Page 12

https://www.hobbytronics.co.uk/usb-host-soic

MMBasic has built in support for a mouse via the MOUSE() function. The mouse can also be used in the file
manager and editor to select text, etc. A full description is provided in the next section of this manual.

Power Switch Orientation

Near the power switch there is a three pin jumper marked PWR which is used to select the orientation of the
power switch. If the two pins towards the back of the Colour Maximite 2 are connected the power switch will
operate as expected in the UK, Australia and New Zealand (down is on). If the two pins towards the front of
the computer are connected the power switch will operate as expected in North America (up is on).

High Accuracy Real Time Clock

The basic design uses a miniature 32KHz crystal and the real time clock hardware built onto the ARM Cortex-
M7 processor to keep the date and time. Optionally you can add an external DS3231MZ+ real time clock to the
PCB (illustrated in the above photo) and it will be kept alive by the coin battery on the PCB. This clock will
typically lose or gain only a couple of seconds in a week.

To enable this time source the command is;: OPTION DS3231 ON

Once enabled the time and date can be set and retrieved from the DS3231MZ+ using the normal MMBasic
DATE/TIME commands and functions.

ESP-01 Module

There is a footprint on the PCB for connecting an ESP-01 WiFi module to COM2. Version 5.07.00 and later of
the firmware allows COM2 to be used as a serial console so if the correct USB/UART code is loaded into the
ESP-01 it will be possible to access the console of the CMM2 remotely.

At this time MMBasic does not include any Internet functions using this device in but communications can be
established using the normal serial communications protocol included in MMBasic.

The other features of the Generation 2 board are common with the first generation Colour Maximite 2 and are
described in the following section (Hardware Features).

Page 13 Colour Maximite 2 User Manual Page 13

Hardware Features

The Colour Maximite 2 is based on a ARM Cortex-M7 32-bit processor which provides nearly all of the
services for the user. This includes the flash memory (where the BASIC interpreter is installed), RAM and a
sophisticated video display controller which generates the high quality VGA image with many advanced
features useful to games programmers.

STM32H74311T6 Cortex-M7 32-bit RISC CPU

This is a high performance 32-bit ARM processor with 2MB of flash and 1MB of RAM. It includes a
sophisticated video display controller which is used to generate a stable VGA output. The MMBasic firmware
is loaded onto the flash memory of this chip and provides the Colour Maximite 2 with its personality.

There are two versions of this chip, Rev Y with a maximum speed of 400MHz and Rev V with a speed of
480MHz. Most vendors do not allow you to specify the version in advance so, depending on the supply
pipeline, you may get either. MMBasic will automatically accommaodate either revision and you can tell which
one you have with the MM.INFO(CPUSPEED) function which will return 400000000 for the Rev Y chip and
480000000 for the Rev V chip. Other than this there is no difference when used in the Colour Maximite 2.

VGA Monitor Connector

This is the main video output and it generates standard VGA signals in a variety of resolutions and number of
colours as determined by the MODE command. These range from 800x600 pixels (the default at power up) up
to 1280x1024 and down to 240x216 pixels with 256, 4096 or 65536 colours. Most modes work perfectly with
monitors that have an aspect ratio of 4:3 or widescreen monitors that can switch to that ratio (most widescreen
monitors will do this automatically). The Generation 2 Colour Maximite 2 can go to 1920x1080 pixels and
24-bit colour depth at some resolutions.

Note that on first setup some monitors may truncate the text on the margins or show an image that seems to
shimmer or flicker. In most cases this can be fixed by pressing the auto setup button on the monitor or, failing
that, using the monitor's image setup mode to adjust parameters such as the clock, phase and position.

If an HDMI output is required it is recommended that an inexpensive VGA to HDMI converter be used. These
cost about US$10+ on eBay and will also encode the audio from the computer so that it can play through the
monitor's speakers.

USB Keyboard Connector

This is a Type A USB connector. It will accept a standard USB keyboard including most that have a wireless
dongle for the USB connection. Note that you cannot use a USB hub on this port or keyboards that have both a
keyboard and mouse function. The latter will not work because they have a built-in USB hub to support the
two different functions.

Typical keyboards that have been tested and work include Logitech K120 or K270 or K400+ or K800, HP
SK2885, Lenovo KU-0225 and Microsoft 600

When the keyboard is connected or on startup the Colour Maximite 2 will enumerate the keyboard and if this is
successful the SD card activity LED will be illuminated. On the first access of the SD card the LED will revert
to its normal action (illuminated during SD card access).

The firmware can accommodate a number of different language layouts including US, French (FR), Spanish
(ES), Belgium(BE) and German (DE). This detail is requested by MMBasic on the first startup of the
computer and can be later changed using the OPTION USBKEYBOARD command.

Power & Serial Console Connector

This USB B connector is for power and the serial console over USB. The power requirement is 5V at 160mA
to 250mA (typical). This is within the capabilities of most USB chargers however some PCs (especially older
laptops) may have trouble supplying this If your Colour Maximite 2 is suffering from intermittent issues such
as reboots, errors reading the SD card, etc then it would be worth changing the power supply to one a with a
much higher capacity (for example, 2 amps or more).

The serial console is available if the Colour Maximite 2 is connected via this port to a personal computer. The
console is used to write and debug BASIC programs and configure the computer. Normally the VGA screen
and USB keyboard are used as the console but the serial console works just as well including using the File
Manager and Full Screen Editor. The only thing that the serial console does not support is graphics.

When connected to your desktop computer via USB the Colour Maximite 2 will be setup as a virtual serial port
over USB and appear to your computer as a normal serial port.

Page 14 Colour Maximite 2 User Manual Page 14

Windows 10 includes the required USB device driver. For other operating systems (ie, Linux, Mac, Windows
8 and earlier) go to the Microchip website https://www.microchip.com/wwwproducts/en/MCP2221A for
instructions (select the Documents tab). The second generation design uses a CH340 USB/UART chip and
support for this is included in most operating systems,

In Windows the Colour Maximite 2 will appear in Device & Portable Devices

Manager as "USB Serial Port" as illustrated on the right v 4 Ports (COM & LPT)

(the COM number will probably be different). e mebiaaslort (COMI)
You also need a terminal emulator program on your & USE Serial Port (C

desktop computer. This program acts like an old fashioned -

. Lo . = = RIAL (COMI
computer terminal where it will display text received from = WCH POl Ex SERIAL {CDME:I
a remote computer and any key presses will be sent to the W P ()
remote computer over the serial link. = Print queues

The terminal emulator that you use should support VT100 1 Processars

emulation as that is what the editor built into the MMBasic expects. For Windows users it is recommended that
you use Tera Term as this has a good VT100 emulator and is known to work with the XModem protocol which
you can use to transfer programs to and from the Colour Maximite (Tera Term can be downloaded from:
http://tera-term.en.lo4d.com/).

The terminal emulator and the serial port that it is using should be set to the Colour Maximite 2 standard of
115200 baud, 8 data bits and one stop bit.

The Apple Macintosh (OS X) is somewhat easier as it has the device driver and terminal emulator built in.
First start the application ‘Terminal’ and at the prompt list the connected serial devices by typing in:

Is /dev/tty.*.

The USB to serial converter will be listed as something like /dev/tty .usbmodem12345. While still at the
Terminal prompt you can run the terminal emulator at 115200 baud by using the command:

Screen /dev/tty.usbmodeml12345 115200
Instructions for Linux are here: http://www.thebackshed.com/forum/ViewTopic.php?FID=16&T1D=12171
When you have the serial port and terminal emulator

setup you can reset the Colour Maximite 2 and you ¥ COMS:115200baud - Tera Term VT
should see the MMBasic banner and prompt on the Fle Edi Setup Contrl Window Help
terminal emulator as illustrated on the right. Colour Maximite 2
. . . . MMBasic Version 5.05.01h69
The USB to Serial converter chip used in the original Copyright 2011-2019 Geoff Graham

Colour Maximite 2 can be a Microchip MCP2221A. By Copyright 2016-2019 Peter Mather
default this chip tells the host that it only needs 100mA

on the 5V pin and in some rare cases this can cause > B
trouble (ie, failure to power up, random restarts, etc).
The fix is to go to https://www.microchip.com/wwwproducts/en/MCP2221A and download the “MCP2221
Utility” (it is under the Documents tab) and use that to change the MCP2221A to request 500mA by default.

Mouse Support

To use the mouse in the file manager and editor it needs to be configured as follows (use channel 0 for a PS2
mouse): OPTION MOUSE channel [,sensitivity]

The optional sensitivity parameter allows you to tune the sensitivity of the Hobbytronic interface by specifying
a number between 0 and 10. Zero indicates that the default automatic sensitivity should be used while other
values will explicitly set the sensitivity as per the Hobbytronic documentation.

For a PS2 mouse the sensitivity can be set between 0 and 8. Values of 1-4 set the resolution of the mouse to 1,2,
4 or 8 counts/mm. Values 5-8 do the same but in addition enable mouse scaling which gives a non-linear
relationship between speed and count (note that not all PS2 mice implement these settings).

To disable the mouse in the editor and file manager use: OPTION MOUSE OFF

Within the file manager and editor the mouse works as you would expect. For example, you can use the mouse
to point and select a file or line, you can select text with the mouse, scroll using the scroll wheel, double click
to open/run a file and so on. For the details see the chapters on the file manager and editor.

Within a MMBasic program the mouse can be enabled for access with various sensitivity settings and interrupts
on left and/or right clicks. Specialised built in functions can be used to determine the current mouse position in
pixels and detect single or double clicks.

Page 15 Colour Maximite 2 User Manual Page 15

https://www.microchip.com/wwwproducts/en/MCP2221A
http://tera-term.en.lo4d.com/
http://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12171
https://www.microchip.com/wwwproducts/en/MCP2221A

Audio Connector

This is a 3.5mm stereo phono socket. The tip is the left channel, the ring is the right channel while the sleeve is
ground. The signal level at full volume is about 1V RMS (approx 3V peak to peak). MMBasic can generate
audio in many formats ranging from simple sine wave tones through to playing WAV, FLAC, and MP3 files.

Note:
e The output is high impedance suitable for feeding into an amplifier. It cannot directly drive a loudspeaker,
headphones or any low impedance load and might be damaged if that was attempted.

o If the audio is garbled and/or lacks normal bass it might indicate that your amplifier has a low input
impedance. Try adding a 4.7K resistor in series with the output (the Generation 2 board has these
permanently installed).

e There is a DC offset on the output. Most amplifiers have an input capacitor so this has no effect but, if
not, it may be necessary to add a 4.7F capacitor in series with the output (positive leg to the CMM2).

Power & SD Card Activity LEDs
The power indicator (green) is illuminated whenever power is applied.

The SD Card activity indicator (red) will illuminate briefly when reading or writing from/to the SD card. The
SD card should not be removed when this LED shows activity. The red LED will also illuminate when a USB
keyboard is plugged in and successfully communicates with MMBasic — it then reverts to normal activity on
the first read/write to the SD card.

SD Card Connector

The SD card connector on the front panel is the main storage for the Colour Maximite 2. All programs reside
on the SD card so it must be present for most operations. This is different from the original Colour Maximite
where the SD card was not necessarily required.

The Colour Maximite 2 will support cards up to 128GB. Cards larger than 32GB should be formatted as
exFAT and cards 32GB or less formatted as FAT32. Note that very small cards may not be reliable and exFAT
is much slower than FAT32. BASIC programs are quite small so an 8GB or 16GB card formatted as FAT32 is
ample and also readily available at a cheap price.

External I/O connector

This 40-pin ribbon connector provides 28 input/output pins which can be controlled from within the BASIC
program plus 3.3V and 5.0V outputs for powering external circuitry plus a number of ground pins.

The total current drawn from all 3.3V pins should be limited to 100mA. Exceeding this may cause the voltage
regulator on the CPU module to enter thermal shutdown. The capacity of the 5V supply is limited only by your
USB power supply.

If more input/output pins are required an 1/0 expander such as the Microchip MCP23017 can be used.

Colour Maximite 2 Generation 1
This is the image of the connector as seen from the rear of the first generation Colour Maximite 2:

2) (4 6 8) (10) (12) (14) (16) (18 20 (22) (24) (26) (28) (30) (32) (34) (36) (38) (40

1) (3) (5) (7) (9) (1) (13) (15) (A7) (19) (1) (23) 25) (27) (29) (31) (33) (35 (37) (39

These numbers are used as reference in the table below and by MMBasic to refer to an 1/O pin.
They are not the connector manufacturer’s standard pin numbers.

The pin layout and positioning of special functions on the external I/O connector is compatible with the
Raspberry Pi allowing Pi HATS to be connected if required.

Note that most Raspberry Pi cables for use with solderless breadboards need to be inverted when plugged into
the Colour Maximite 2’s rear 1/0O connector (ie, the key tab on the connector needs to be on the bottom). If this
is not done the pin legends on the breadboard connecter will be wrong. This is not a problem if the Maximite
connector is unshrouded otherwise you may need to cut a new keyway on the bottom of the shroud with side
cutters (not hard to do).

Page 16 Colour Maximite 2 User Manual Page 16

Colour Maximite 2 Generation 2

The second generation Colour Maximite 2 has these pins reversed so that the issue described above (inverted
connector) is avoided. On this version Raspberry Pi cables can plug directly in — there is no need to cut a
second keyway.

This is the image of the connector as seen from the rear of the second generation Colour Maximite 2:

HDOIINIDOBIDOOOBOOOOOOO®
@WBHBDADODBDIIADBBOBBDOOOO®O

These are the connector manufacturer’s standard pin numbers.
These numbers are used as reference in the table below and by MMBasic to refer to an 1/0 pin.

I/0 Pin Capabilities

The capabilities of each pin are:

Pin Features Pin Features

1 3.3 Volt Power 2 5.0 Volt Power

3 I’°C SDA /CAN1 Tx 5V 4 5.0 Volt Power

5 I’°C SCK /CAN1 Rx 5V 6 Ground

7 Analog Input or COUNT 1 8 Analog Input or COM1: TX

9 Ground 10 | Analog Input or COM1: RX

11 | COM2: RX 5V 12 | Analog Input or PWM 1A

13 | Analog Input or COUNT 2 14 | Ground

15 | Analog Input or COUNT 3 16 | Analog Input or COM2: TX

17 | 3.3 Volt Power 18 | FAST COUNT 5V
19 | SPIMOSI /CAN2Rx 5V 20 | Ground

21 | SPIMISO 5V 22 | Analog Input or PWM 1B

23 | SPICLOCK 5V 24 | Analog Input or COUNT 4

25 | Ground 26 | Analog Input

27 | I°C2SDA 5V 28 | I°C2 SCK 5V
29 | Analog Input or PWM-1C 30 | Ground

31 |PWM2B 5V 32 | General I/O 5V
33 | General 1/0 5V 34 | Ground

35 | SPI2 MISO 5V 36 | PWM2A 5V
37 | Analog Input or COM1 DE 38 | SPI2 MOSI 5V
39 | Ground 40 | SPI2CLOCK /CAN2Tx 5V

Except for the power and ground pins (shown as shaded grey) all pins can be used for digital 1/0 using the
PIN() function and command and using the pin number as the reference. For example pin 3 can be set to an
output using SETPIN 3, DOUT and then the pin set high (ie, to 3.3V) using the command PIN(3) = 1.

All pins marked 5V can tolerate inputs up to 5.3V all other pins can tolerate up to 3.6V.

Pin 40 can be used to completely reset the Colour Maximite 2 to its "factory default” condition. If that pin is
connected to ground (ie, pin 39) on power up all options will be reset to their defaults and any program in
program memory erased. Note that external circuitry connected to this pin (eg, a capacitor) must not look like a
short circuit at power up as this might trigger a reset.

Page 17 Colour Maximite 2 User Manual Page 17

There are 12 pins marked as supporting analog input and these can be used for measuring voltages. The other
special capabilities (eg, COM2: RX, etc) are described in the relevant section of this manual.

Both the data line (SDA) and clock (SCL) for both 1°C ports have 10K pullup resistors (to 3.3V) installed on
the motherboard so external pullup resistors are not required. Note that these may interfere with the operation
of these pins if they are used as general purpose inputs.

Wii Nunchuk and Wii Classic Connector

The Colour Maximite 2 includes connectors on the front panel for either the Wii
Nunchuk (illustrated on the right) or the Wii Classic game controllers and MMBasic
includes commands and functions to work with both of them. Many games written
for the Colour Maximite 2 will use either controller to control the game play so they
are a useful addition if you plan on playing some games.

For more details on the Nunchuk and Classic search the Internet for "Nintendo =
Nunchuk™ or "Nintendo Classic". Clones of both of these can be purchased cheaply
for US$10 to US$40.

The connector used by the Wii controllers has a large plastic clip on top and this must
be uppermost when the plugged in. Take care as it is possible to insert the connector
upside down and that may damage the controller or the Colour Maximite.

Temperature Sensor
These solder pads are for an optional Dallas DS18B20 temperature sensor.

Support for the DS18B20 is built into MMBasic — see the section Special Device Support in this manual for the
details. The signal line for this sensor is pin 42. If this sensor is installed the associated pullup resistor (4.7KQ)
on the motherboard must also be installed.

IR Receiver

These solder pads are for an IR remote control receiver which will allow the Colour Maximite 2 to be
controlled via a standard NEC or Sony infra red remote control transmitter. See the section Special Device
Support for details of the receivers that can be fitted and how to use them in your program. The signal pin for
the receiver can also be used as a digital 1/O pin as pin 41.

Firmware Upload Select

This is either a switch or a jumper. Normally the switch should be set in the "Flash" position or, if a jumper is
used, it should be in the “RUN” position.

When uploading new firmware the switch is set in the "System" position and the jumper should be moved to
the “PRG” position. See Appendix G - Loading the Firmware at the end this manual for the details.

Backup Battery

The CR1220 coin cell battery on the motherboard keeps the internal ARM Cortex-M7 real time clock running
while the power is off and also keeps a bank of 4KB RAM alive at the same time. The real time clock is used
to provide the correct time to MMBasic on startup and the battery backed RAM is used to store saved variables
and options. The life of this battery life will be about 3 to 4 years of normal use.

Reset Switch

This is used to reset the Colour Maximite 2 and start the bootup sequence as if the power had been cycled.

Page 18 Colour Maximite 2 User Manual Page 18

Using MMBasic

Commands and Program Input

At the command prompt you can enter a command and it will be immediately run. Most of the time you will
do this to run a program or set an option. But this feature also allows you to test out commands at the
command prompt.

To enter a program the easiest method is to use the EDIT command. This will invoke the full screen editor
which is built into the Maximite and is described later in this manual. It includes advanced features such as
search and copy, cut and paste to and from a clipboard.

You could also compose the program on your desktop computer using something like Notepad and then
transfer it via the XModem protocol (see the XMODEM command) or by streaming it up the console serial link
(see the AUTOSAVE command) or by saving it to an SD card and transferring that to the Colour Maximite 2.

A fourth and convenient method of writing and debugging a program is to use MMEdit. This is a program
running on your Windows computer which allows you to edit your program on your computer then transfer it
via the serial console with a single click of the mouse. MMEdit was written by Jim Hiley and can be
downloaded for free from https://www.c-com.com.au/MMedit.htm

One thing that you cannot do is use the old BASIC method of entering a program which was to prefix each line
with a line number. Line numbers are optional in MMBasic so you can still use them if you wish but if you
enter a line with a line number at the prompt MMBasic will simply execute it immediately.

Editing the Command Line

When entering a line at the command prompt the line can be edited using the arrow keys to move along the
line, the Delete key to delete a character and the Insert key to switch between insert and overwrite. The up and
down arrow keys will move through a history of previously entered commands which can be edited and reused.

Console Keyboard/Display

Input can come from either the USB keyboard or from a computer using a terminal emulator via the USB serial
interface. Both the keyboard and the serial over USB can be used simultaneously and can be detached or
attached at any time without affecting a running program.

The text output from MMBasic will be simultaneously sent to the VGA monitor and the serial over USB
interface however the graphics commands operate on the video output only.

This behaviour can be changed with the OPTION CONSOLE command. Using this it is possible to turn either
console off or on and save the setting so that it will be automatically applied on reboot.

Keyboard Shortcuts

The function keys on the keyboard or the serial console can be used at the command prompt to automatically
enter common commands. The first four function keys (F1 to F4) will insert the text followed by the Enter key
so that the command is immediately executed:

F1 FILES
F2 RUN
F3 LIST
F4 EDIT

Function keys F5 to F10 will insert the text then position the cursor between the quote marks at the end so that
the file name can be directly entered. Pressing Enter will then execute the command:

F5 AUTOSAVE ""
F6 XMODEM RECEIVE ""
F7 XMODEM SEND "

F8 EDIT ™
F9 LIST FILE ™"
F10 RUN™

Function keys F11 and F12 can be programmed with custom text:
F11 User specified string — See the OPTION F11 Command.
F12 User specified string — See the OPTION F12 Command.

Page 19 Colour Maximite 2 User Manual Page 19

https://www.c-com.com.au/MMedit.htm

Line Numbers and Program Structure

The structure of a program line is:
[line-number] [label:] command arguments [: command arguments] ..

A label or line number can be used to mark a line of code.

A label has the same specifications (length, character set, etc) as a variable name but it cannot be the same as a
command name. When used to label a line, the label must appear at the beginning of a line but after a line
number (if used) and be terminated with a colon character (©).

Commands such as GOTO can use labels or line numbers to identify the destination (in that case the label does
not need to be followed by the colon character). For example:
GOTO xxxx

Xxxx: PRINT ""We have jumped to here"

Multiple commands separated by a colon can be entered on the one line (as in INPUT A - PRINT B).

All Programs Are Run From the SD Card

On the Colour Maximite 2 all programs reside on the SD card which acts as the "disk drive" for the computer.
As a result the SD card must be present for most operations. This is different from the original Maximite where
the SD card was not necessarily required.

When you edit a program you are editing the program on the SD card, when you run a program you will run it
from the SD card, etc. The reason for this arrangement is that when a program is loaded into memory for
execution MMBasic will do a lot of pre-processing to speed up execution. This includes inserting any include
files specified in the source, stripping out all comments, removing unnecessary spaces and so on. The resultant
program is then saved in program memory but it cannot be edited or listed because after pre-processing the
executable program is not easily human readable.

The benefit of this arrangement is a marked improvement in the speed of execution and that much larger
programs can fit into program memory and be run.

The main commands used to manage a program are:

RUN "prog" Run the program called prog located on the SD card.

LIST "prog" List the program called prog on the console screen. This will pause every screen
full and any key press will continue the listing.

EDIT "prog" Edit the program called prog located on the SD card.

For example: RUN "hello.bas"

Note that the file name must be surrounded by double quotes as shown above. This is because the file name is
a string and in MMBasic all string constants (ie, not a variable) must be quoted. In all cases the file extension
".BAS" will be automatically added if an extension was not specified in the command line. (See also the *
(asterix) shortcut which allows * hello to be used without quotes as an alias for RUN “hello”)

When RUN or EDIT are used they set what is known as the current program name. This is the file name that
will be used if the commands RUN, EDIT and LIST are used without specifying a file name. For example, you
could use the command EDIT "MyProg.bas" and that will set the current program name to "MyProg.bas".
From then on you could use RUN, EDIT and LIST without a file name and they will refer to "MyProg.bas" on
the SD card.

To clear the current program name and erase the processed program held in program memory you can use the
command NEW. This also clears all variables, closes all files, etc (ie, resets MMBasic).

There are three other commands that operate on program files. These are AUTOSAVE, LIST ALL and
XMODEM. These are used for sending/receiving programs via the serial console to or from the SDcard.
AUTOSAVE will also update the current file name so that after a file has been transferred the RUN command
without a file name will run that program. Note that the Colour Maximite 2 does not have the commands
LOAD or SAVE as they are not required.

Finally, all commands referred to above (with the exception of RUN) can be used with a different file extension
to operate on files that are not programs. For example, EDIT "data.txt" will edit the text file on the SD card
called "data.txt". In this case the current program name will not be changed.

Page 20 Colour Maximite 2 User Manual Page 20

Status Line

When at the command prompt MMBasic will display a status line at the bottom of the VGA screen. On the left
side this will show the current directory on the SD card while the text in the centre is the current program name
(ie, the file that will be used if the commands RUN, EDIT and LIST are used without specifying a file name).
On the right side it shows the current time and date.

The status line can be turned off with the OPTION STATUS OFF command.

Running Programs

A program is set running by the RUN command. You can interrupt MMBasic and the running program at any
time by typing CTRL-C on the console input and MMBasic will return to the command prompt.

The running program is normally held in non volatile flash memory. This means that it will not be lost if the
power is removed and, if you have the AUTORUN feature turned on, the program will automatically run when
power is restored (use the OPTION command to turn AUTORUN on). Normally an SD card holding the
original program must be present in order to run a program but this is one of the exceptions and allows you to
change the SD card for recording data, etc.

Expressions

In most cases where a number or string is required you can also use an expression. For example:

FNAME$ = “TEST”
LIST FNAME$ + .BAS”

The RUN command is the only exception, in this case the filename argument must be a string constant
surrounded by double quotes (ie, not an expression).

Standards and Compatibility

MMBasic implements a large subset of Microsoft’s GW-BASIC. There are numerous small differences due to
physical and practical considerations but most ordinary BASIC commands and functions are essentially the
same. An online manual for GW-BASIC is available at http://www.antonis.de/gbebooks/gwbasman/index.html
and this provides a more detailed description of the commands and functions.

MMBasic also implements a number of modern programming structures documented in the ANSI Standard for
Full BASIC (X3.113-1987) or ISO/IEC 10279:1991. These include SELECT CASE, SUB/END SUB, the DO
WHILE ... LOOP and structured IF .. THEN ... ELSE ... ENDIF statements.

The SELECT CASE commands allow the programmer to create a clear and structured decision tree that is more
flexible and easier to understand when multiple decisions must be made. The DO WHILE ... LOOP command
make it easy to build loops without using the GOTO statement. User defined subroutines and functions make it
easy to add your own commands to MMBasic.

The IF... THEN command can span many lines with ELSEIF ... THEN, ELSE and ENDIF statements as
required and also spaced over many lines.

Saved Variables

Data is normally saved by the program to the SD card but sometimes there is a need to save a small amount of
data which is independent of the SD card and will survive a power failure, reboot, etc. This data might include
menu choices, calibration data and configuration information.

This can be done with the VAR SAVE command which will save the variables listed on its command line in
non volatile memory. These variables can be restored with the VAR RESTORE command which will add all
the saved variables to the variable table of the running program. Normally VAR RESTORE is placed near the
start of a program so that the variables are ready for use by the program.

The space reserved for saved variables is 4KB. This isa RAM memory which is kept alive by the battery on
the motherboard. Writing to this memory is near instantaneous and data can be written an unlimited number of
times without degradation (unlike with the Micromite).

Timing
You can get the current date and time using the DATE$ and TIMES$ functions and you can set them by
assigning the new date and time to them. The Colour Maximite 2 has a battery backed clock so it will not lose

the time even when powered off. If you find that the time drifts while the power is off you can use the
OPTION RTC CALIBRATE command to correct for any inaccuracies.

Page 21 Colour Maximite 2 User Manual Page 21

http://www.antonis.de/qbebooks/gwbasman/index.html

You can freeze program execution for a number of milliseconds using PAUSE. MMBasic also maintains an
internal stopwatch function (the TIMER function) which counts up in microseconds. You can reset this timer
to zero or any other number by assigning a value to the TIMER.

Using SETTICK you can setup up to four “ticks” which will generate regular interrupts with a period from one
millisecond to over a month.

Watchdog Timer

It is possible to use the Colour Maximite 2 without a VGA monitor and also have nothing connected to the
serial console. With OPTION AUTORUN ON set the program will run automatically on power up without
human intervention.

However there is the possibility that a fault in the program could cause MMBasic to generate an error and return
to the command prompt. This would be of little use in this situation as there would be nothing connected to the
console. Another possibility is that the BASIC program could get itself stuck in an endless loop for some reason.
In both cases the visible effect would be the same, the program would stop running until the power was cycled.

To guard against this the watchdog timer can be used. This is a timer that counts down to zero and when it
reaches zero the processor will be automatically restarted (the same as when power was first applied), this will
occur even if MMBasic is sitting at the command prompt. Following the restart the automatic variable
MM.WATCHDOG will be set to true to indicate that the restart was caused by a watchdog timeout.

The WATCHDOG command should be placed in strategic locations in the program to keep resetting the timer
and therefore preventing it from counting down to zero. Then, if a fault occurs, the timer will not be reset, it
will count down to zero and the program will be restarted (assuming the AUTORUN option is set).

PIN Security

Sometimes it is important to keep the data and program confidential. In the Colour Maximite 2 this can be
done by using the OPTION PIN command. This command will set a pin number (which is stored in non
volatile memory) and whenever MMBasic returns to the command prompt (for whatever reason) the user at the
console will be prompted to enter the PIN number. Without the correct PIN the user cannot get to the
command prompt and their only option is to enter the correct PIN or reboot the computer. When it is rebooted
the user will still need the correct PIN to access the command prompt.

Because an intruder cannot reach the command prompt they cannot list or copy the program held in the
program memory, they cannot change the program or change any aspect of MMBasic. Once set the PIN can
only be removed by providing the correct PIN as set in the first place. If the number is lost the only method of
recovery is to reset MMBasic as described below (which will erase the program).

Note that this is not a complete protection as it is possible to connect a debugger to the ARM Cortex-M7 CPU
and access all areas of memory using that facility but it does deter casual access.

The Serial Console

The default settings for the serial over USB console are 115200 baud, 8 bits, no parity and one stop bit. Using
the OPTION BAUDRATE command the baud rate of the serial console can be changed to any other speed.
Changing the console baud rate to a higher speed makes the full screen editor faster in redrawing the screen.

Once changed the console baud rate will be permanently remembered unless another OPTION BAUDRATE
command is used to change it. Using this command it is possible to accidently set the baud rate to an invalid
speed and in that case the only recovery is to connect a VGA monitor and USB keyboard to change the
baudrate or reset MMBasic as described below.

If the serial console is not required it can be disabled with the command OPTION CONSOLE SCREEN. This
is reset when the program ends. If you want to permanently disable the serial console then the above command
should be followed with OPTION CONSOLE SAVE. Disabling the serial console has two advantages:

e The built in editor will operate faster as it does not need to echo the edited text on the slow serial console.

o The serial port used by the serial console can be opened as COM3:..

Resetting MMBasic

MMBasic can be reset to its original configuration by placing a link between pins 39 and 40 on the rear 1/O
connector while power is applied. This will result in the program memory and saved variables being
completely erased and all options (security PIN, console baud rate, etc) reset to their initial defaults.

When using pin 40 for general 1/0O care must be taken so that it does not look like it is shorted to ground on
power up. The symptom of this is unexplained sudden losses of all options that have been changed and the
erasure of the program held in flash.

Page 22 Colour Maximite 2 User Manual Page 22

File Manager

The file manager is an easy way to manage files and directories on the SD card. Using this you can search,
delete, rename, run, etc. The file manager will work with both the VGA video output and the serial console.

To run the file manager you use the command FILES at the command prompt or use the F1 key on your

keyboard. This will start up in the current directory and list the files and directories there.
On the VGA monitor it will look like this:

<DIR> SPRITES
<DIR> SPRTDEMO
<DIR> SPRTEST
<DIR> T

<DIR> TESTSPR
<DIR> TFT

14:10 30-06-2013 AUTORUN. BAS
10:38 17-01-2020 CIRCLES.BRS
08132 18-01-2020 CLOCK.BAS
20:40 16-08-2012 CMM4_TST.BAS
07:59 098-07-2012 COLOUR-2.BRS
13140 26-08-2012 COLOUR-3.BRS
14:14 05-91-2013 COLOUR-3.SPR
06155 07-07-2012 COLOUR1.BAS
13138 27-06-2013 FILEMAN2.BAS
18:37 20-02-2012 FUNTHIRE.BAS
18:37 20-02-2012 GETTEMP.BAS
10:11 23-039-2013 GPS-SIM.BAS
26:55 97-07-2012 GRAPH-B.BAS
06:55 97-07-2012 GRAPH-C.BAS
10146 03-02-2011 ~ ORAPH.BAS
22124 21-84-2015 BI.BAS
13140 26-08-2012 JULIA.BAS
096:00 19-01-2012 KEYBOARD. BAS
06145 11-08-2012 MANDBRLT.BAS
17:08 23-85-2019 MODEDEMO. BAS
13140 26-08-2012 PLAYMOD. BAS

To move around the list of files you use the arrow keys, Page Up or Page Down keys and the Home or End
keys. Pressing Enter when positioned on a directory will take you into that directory and if it is positioned on a

program it will run that program. If a mouse is fitted it can also be used to select and run files.

The Escape key (ESC) will exit the file manager.

At the bottom of the screen the status line lists details such as the current cursor position and the functions that
are available. All these operate on the file currently selected by the cursor which is also displayed to the left of

the status line:

Enter This is the action key. If the file is a program this will RUN the program. If the file is an
audio file this will PLAY the file on the sound output. If the file is a picture file the
picture will be displayed — press any key to return to the file manager. If the cursor is

positioned on a directory that directory will be entered. If the directory has the name "..

this will take you up one level in the directory hierarchy.

F3 This will LIST the program or text file selected.

Fa This will EDIT the program or text file selected.

F5 Will prompt for a directory name and create that directory.

CTRL-C Will prompt for a file name and copy the selected file to that new name.

CTRL-F Will enter the search mode. You will be prompted for the search text and as you type

this in the cursor will automatically be positioned at the first matching file found. You
can then use the down arrow key to search for the next occurrence or the up arrow key
for the previous occurrence. The Enter key will leave the cursor where it is and return to

normal mode. Escape will abort the search.

CTRL-K Will delete a file or directory. A directory must be empty otherwise it will be ignored.
CTRL-R Will rename a file or directory.
CTRL-S This will toggle the sort order between name, size, type and date. The current sort order

is displayed on the right hand side of the status line.

Page 23 Colour Maximite 2 User Manual

Page 23

Mouse Support
To use the mouse in the file manager it needs to be configured using the OPTION MOUSE command (see the
previous Hardware Features section. When configured the mouse works as you would expect, you can:

o Leftclick on a line to position the cursor.

e You can use the wheel to scroll up and down the file list.

¢ Right click in the top half of the screen to page up.

e Right click in the bottom half of the screen to page down.

o Double click to open/run a file (same as the Enter key).

o If you open an image you can return to the file manager by left clicking the mouse.

Page 24 Colour Maximite 2 User Manual Page 24

Full Screen Editor

An important productivity feature is the built-in full screen editor. This will work with both the VGA video
output and the serial console. To run the editor you use the command EDIT at the command prompt. For
example:

EDIT "filename"

Note that double quote marks must be used around the file name. If the file's extension is not specified
MMBasic will automatically add the extension ".BAS". If the file does not exist it will be created when you
save and exit the editor. Non program files can be edited by specifying an extension other than ".BAS".

You can also use EDIT without a file name and in that case the last program that was edited or RUN will be
edited. After editing the file it can be run using the RUN command without specifying a file name or you could
use the F2 function key within the editor to save and run the program.

On the VGA screen the editor looks like this:

for 1 =1 to 20
if i = 10 then continue For
ifF L = 10 then error

next i

if i & 21 then error

=] o]
if L = 10 then continue Do
if L = 10 then error
loop while 1 < 20
if i <> 20 then error

* test single line loops
tn = =36
range = 24
Do While tn >= range : tn = tn - range
Loop
if tn <> =36 then error
tn = =36
Do While tn >= range
= tn - range : Loop
tn <> -36 then error
= =36

1 e

HELP} F1¥Save‘l F2=Run | ESC=Quit | Ctrl-F=Find | Ctrl-V=Paste | Ctrl-S=Select

When the editor starts up the cursor will be automatically positioned at the last place that you were editing or, if
your program had just been stopped by an error, the cursor will be positioned at the line that caused the error.
At the bottom of the screen the status line lists details such as the current cursor position and the common
functions supported by the editor.

If you have used an editor like Windows Notepad previously you will find that the operation of this editor is
familiar. The arrow keys will move the cursor around in the text, home and end will take you to the beginning
or end of the line. Page up and page down will do what their titles suggest. The delete key will delete the
character at the cursor and backspace will delete the character before the cursor. The insert key will toggle
between insert and overtype modes. About the only unusual key combination is that two home key presses will
take you to the start of the program and two end key presses will take you to the end. If a mouse is fitted it can
also be used to position the cursor, select text, etc.

The full selection of commands is:

ESC This will cause the editor to abandon all changes and return to the command prompt
with the file unchanged. If you have changed the text you will be asked to press ESC
twice more to confirm this action.

F1 This will save the file and return to the command prompt.
F2 This will save the file and immediately run it.
F3 or CTRL-F This will enter the find mode. You will be prompted for the search text and as you

type this in the editor will automatically position the cursor at the first text found.
You can then use the down arrow key to search for the next occurrence or the up
arrow key for the previous occurrence. The Enter key will leave the cursor at this
position and return to normal editing mode. F5 or CTRL-V will replace the searched
text with whatever is in the clipboard (see below). Escape will abort the search.

Page 25 Colour Maximite 2 User Manual Page 25

F4 or CTRL-S

F5 or CTRL-V

F6

END or CTRL-K

CTRL-W

F7

F8 or CTRL-B

F11

F12

TAB
SHIFT TAB

SHIFT DELETE

This will enter the select mode. In this mode you can use the arrow keys, HOME or
END to select text and copy it to the clipboard. It will be highlighted on the screen as
you select it. Then F5 or CTRL-C will copy the selection to the clipboard, F4 or
CTRL-X will copy and delete the selection. DELETE will simply delete the selection
and ESCAPE will return to the normal editing mode without changing anything.
Note: you can also enter selection mode when using a USB keyboard by holding the
shift key and pressing right-arrow or down-arrow.

This will insert (at the current cursor position) the text that had been previously cut or
copied in the select mode (see above).

This will save the edited text and exit the editor similar to the F1 key. The difference
is that F6 will not update the “current program name” which is used when the RUN,
LIST and EDIT commands are entered without specifying a filename.

Move the cursor to the end of the line.

Will allow you to save a backup copy of the edited file to a different file. The editor
will continue to edit the original file.

Will prompt for a file name and will insert the text from that file into the editor at the
current cursor position.

Will prompt for a file name and will write to the file the contents of the text that had
been previously cut or copied in the select mode (see above). This together with F7 is
an easy mechanism for moving blocks of text beween files.

Will paste at the current cursor position the top command last viewed in the help
dialogue. It is inactive until the help facility has been used.

Enters the help dialogue and automatically sets any text under the cursor as the match
string for help. Use F12 or ESC to exit the help dialogue. On exiting help the top line
of the help dialogue will be available to paste into the current program using F11. See
the HELP command for more details.

Will move the cursor to the next tab position as defined by OPTION TAB.

Deletes a number of spaces (defined by OPTION TAB) if the cursor is on a space
character. Useful for changing the indenting of a line. USB keyboard only.

if used at the beginning of a line deletes all leading spaces. Anywhere else in the line
and it acts like DELETE. USB keyboard only.

For security all save commands will create a backup file by appending “.bak” to the filename and renaming the
original file before saving the file. This ensures that in the event of any sort of error writing to SD card the
worst case is that only the edited version is lost.

The best way to learn how to use the editor is to simply fire it up and experiment.

The editor is a very productive method of writing a program. With the command EDIT you can enter your
program then, by pressing the F2 key, you can save and run the program. If your program stops with an error
pressing the function key F4 at the command prompt will run the command EDIT and place you back in the
editor with the cursor positioned at the line that caused the error. This edit/run/edit cycle is very fast.

Mouse Support
To use the mouse in the editor it needs to be configured using the OPTION MOUSE command (see the
previous Hardware Features section. When configured the mouse works as you would expect, you can:
Left click to position the edit cursor.

Scroll wheel to move up and down.

Left click and hold down then move cursor to a new position and release the left button. The enclosed area
will be selected for cut and paste.

Within cut and paste mode you can use the cursor and wheel to change the selection.

To exit cut and paste without doing anything right click.

Right click in top area of screen to scroll up (except in select mode).

Right click in bottom of screen to scroll down (except in select mode).

Left click at far left to scroll horizontally one character if the screen is scrolled horizontally.

Page 26

Colour Maximite 2 User Manual Page 26

o Leftclick at far right to scroll horizontally one character if the line is too long for the display.
o Double left click at the far left to scroll to the beginning of line if the screen is scrolled horizontally.
o Double left click at the far right to scroll horizontally to the end of line if the line is too long to display.

Colour Coded Editor Display

The editor will automatically colour code the edited program with keywords, numbers and comments displayed
in different colours. If necessary this feature can be disabled with the command:

OPTION COLOURCODE OFF or OPTION COLOURCODE REVERSE

and re enabled with:
OPTION COLOURCODE ON

This setting is saved in non-volatile memory and automatically applied on startup. It applies to both the VGA
output and the serial console.

Serial Console
The editor will also automatically work with the serial console (including colour coding).

To operate properly this feature requires a terminal emulator that can interpret the appropriate VT100 escape
codes and respond correctly. It works correctly with Tera Term however Putty needs its default background
colour to be changed to white (Settings >> Colours >> Default Background >> Modify).

Colour coding the editor’s output requires many extra characters to be sent to the terminal emulator and this can
slow down the screen update. If necessary colour coding can be turned off or the baud rate can be set to a
higher speed for faster updates (see OPTION BAUDRATE).

Memory Usage

To provide long line editing and sideways scrolling the editor needs more RAM than would be implied by the
number of characters being edited. This only has an effect on very large programs (ie, greater than approx
9,000 lines) on the original 1% Generation design and can cause the editor to generate an out of memory error
when loading. This is generally not a problem with the 2"* Generation design.

The solution is to break the program into chunks with the relatively static portions included in the main
program using the #INCLUDE command. These included files are inserted when the program is loaded via the
RUN command and have no influence on performance or the overall amount of program memory used.

Page 27 Colour Maximite 2 User Manual Page 27

Variables and Expressions

In MMBasic command names, function names, labels, variable names, file names, etc are not case sensitive, so
that "Run" and "RUN" are equivalent and "dOQ" and "Doo" refer to the same variable.

Variables

Variables can start with an alphabetic character or underscore and can contain any alphabetic or numeric
character, the period (.) and the underscore (). They may be up to 31 characters long.
A variable name or a label must not be the same as a function or one of the following keywords: THEN, ELSE,
GOTO, GOSUB, TO, STEP, FOR, WHILE, UNTIL, LOAD, MOD, NOT, AND, OR, XOR, AS.
Eg, step =5 is illegal as STEP is a keyword.
MMBasic supports three different types of variables:
1. Double Precision Floating Point.
These can store a number with a decimal point and fraction (eg, 45.386) however they will lose accuracy
when more than 14 digits of precision are used. Floating point variables are specified by adding the
suffix 'I' to a variable's name (eg, i!, nbr!, etc). They are also the default when a variable is created
without a suffix (eg, i, nbr, etc).
2. 64-bit Signed Integer.
These can store positive or negative numbers with up to 19 decimal digits without losing accuracy but
they cannot store fractions (ie, the part following the decimal point). These are specified by adding the
suffix '%' to a variable's name. For example, 1%, nbr%, etc.
3. A String.
A string will store a sequence of characters (eg, "Tom"). Each character in the string is stored as an eight
bit number and can therefore have a decimal value of 0 to 255. String variable names are terminated with
a'$' symbol (eg, name$, s$, etc). Strings can be up to 255 characters long.

Note that it is illegal to use the same variable name with different types. Eg, using nbr! and nbr% in the
same program would cause an error. This is different from the original Colour Maximite which allowed this.
Most programs use floating point variables for arithmetic as these can deal with the numbers used in typical
situations and are more intuitive than integers when dealing with division and fractions. So, if you are not
bothered with the details, always use floating point.

Constants

Numeric constants may begin with a numeric digit (0-9) for a decimal constant, &H for a hexadecimal
constant, &0 for an octal constant or &B for a binary constant. For example &B1000 is the same as the
decimal constant 8. Constants that start with &H, &O or &B are always treated as 64-bit unsigned integer
constants.

Decimal constants may be preceded with a minus (-) or plus (+) and may be terminated with 'E' followed by an
exponent number to denote exponential notation. For example 1.6E+4 is the same as 16000.

When a constant number is used it will be assumed that it is an integer if a decimal point or exponent is not
used. For example, 1234 will be interpreted as an integer while 1234.0 will be interpreted as a floating point
number.

String constants are surrounded by double quote marks ("). Eg, "Hello World".

OPTION DEFAULT
A variable can be used without a suffix (ie, !, % or $) and in that case MMBasic will use the default type of
floating point. For example, the following will create a floating point variable:

Nbr = 1234

However the default can be changed with the OPTION DEFAULT command. For example, OPTION
DEFAULT INTEGER will specify that all variables without a specific type will be integer. So, the following
will create an integer variable:

OPTION DEFAULT INTEGER

Nbr = 1234

Page 28 Colour Maximite 2 User Manual Page 28

The default can be set to FLOAT (which is the default when a program is run), INTEGER, STRING or NONE.
In the latter all variables must be specifically typed otherwise an error will occur.

The OPTION DEFAULT command can be placed anywhere in the program and changed at any time but good
practice dictates that if it is used it should be placed at the start of the program and left unchanged.

OPTION EXPLICIT

By default MMBasic will automatically create a variable when it is first referenced. So, Nor = 1234 will
create the variable and set it to the number 1234 at the same time. This is convenient for short and quick
programs but it can lead to subtle and difficult to find bugs in large programs. For example, in the third line of
this fragment the variable Nbr has been misspelt as Nbrs. As a consequence the variable Nbrs would be
created with a value of zero and the value of Total would be wrong.

Nbr = 1234

Incr = 2

Total = Nbrs + Incr

The OPTION EXPLICIT command tells MMBasic to not automatically create variables. Instead they must be
explicitly defined using the DIM, LOCAL or STATIC commands (see below) before they are used. The use of
this command is recommended to support good programming practice. If it is used it should be placed at the
start of the program before any variables are used.

DIM and LOCAL

The DIM and LOCAL commands can be used to define a variable and set its type and are mandatory when the
OPTION EXPLICIT command is used.
The DIM command will create a global variable that can be seen and used throughout the program including
inside subroutines and functions. However, if you require the definition to be visible only within a subroutine
or function, you should use the LOCAL command at the start of the subroutine or function. LOCAL has
exactly the same syntax as DIM.
If LOCAL is used to specify a variable with the same name as a global variable then the global variable will be
hidden to the subroutine or function and any references to the variable will only refer to the variable defined by
the LOCAL command. Any variable created by LOCAL will vanish when the program leaves the subroutine.
At its simplest level DIM and LOCAL can be used to define one or more variables based on their type suffix or
the OPTION DEFAULT in force at the time. For example:

DIM nbr%, s$

But it can also be used to define one or more variables with a specific type when the type suffix is not used:
DIM INTEGER nbr, nbr2, nbr3, etc

In this case nbr, nbr2, nbr3, etc are all created as integers. When you use the variable within a program you do
not need to specify the type suffix. For example, MyStr in the following works perfectly as a string variable:

DIM STRING MyStr
MyStr = "Hello"

The DIM and LOCAL commands will also accept the Microsoft practice of specifying the variable's type after
the variable with the keyword "AS". For example:

DIM nbr AS INTEGER, s AS STRING

In this case the type of each variable is set individually (not as a group as when the type is placed before the list
of variables).

The variables can also be initialised while being defined. For example:
DIM INTEGER a =5, b =4, ¢c = 3

DIM s$ = "World", i% = &H8FF8F
DIM msg AS STRING = "Hello™ + ™ "™ + s$

The value used to initialise the variable can be an expression including user defined functions.

The DIM or LOCAL commands are also used to define an array and all the rules listed above apply when
defining an array. For example, you can use:

DIM INTEGER nbr(10), nbr2, nbr3(5,8)

Page 29 Colour Maximite 2 User Manual Page 29

When initialising an array the values are listed as comma separated values with the whole list surrounded by
brackets. For example:

DIM INTEGER nbr(5) = (11, 12, 13, 14, 15, 16)
or

DIM days(7) AS STRING = (*'**,"Sun","Mon",""Tue",""Wed","Thu","Fri","Sat"")

STATIC

Inside a subroutine or function it is sometimes useful to create a variable which is only visible within the
subroutine or function (like a LOCAL variable) but retains its value between calls to the subroutine or function.

You can do this by using the STATIC command. STATIC can only be used inside a subroutine or function and
uses the same syntax as LOCAL and DIM. The difference is that its value will be retained between calls to the
subroutine or function (ie, it will not be initialised on the second and subsequent calls).

For example, if you had the following subroutine and repeatedly called it, the first call would print 5, the
second 6, the third 7 and so on.
SUB Foo
STATIC var = 5
PRINT var
var = var + 1
END SUB

Note that the initialisation of the static variable to 5 (as in the above example) will only take effect on the first
call to the subroutine. On subsequent calls the initialisation will be ignored as the variable had already been
created on the first call.

As with DIM and LOCAL the variables created with STATIC can be float, integers or strings and arrays of
these with or without initialisation. The length of the variable name created by STATIC and the length of the
subroutine or function name added together cannot exceed 31 characters.

CONST

Often it is useful to define an identifier that represents a value without the risk of the value being accidently
changed - which can happen if variables were used for this purpose (this practice encourages another class of
difficult to find bugs).

Using the CONST command you can create an identifier that acts like a variable but is set to a value that cannot
be changed. For example:

CONST InputVoltagePin = 26

CONST Maxvalue = 2.4

The identifiers can then be used in a program where they make more sense to the casual reader than simple
numbers. For example:

IF PIN(InputVoltagePin) > MaxValue THEN SoundAlarm

A number of constants can be created on the one line:
CONST InputVoltagePin = 26, MaxValue = 2.4, MinValue = 1.5

The value used to initialise the constant is evaluated when the constant is created and can be an expression
including user defined functions.

The type of the constant is derived from the value assigned to it; so for example, MaxValue above will be a
floating point constant because 2.4 is a floating point number. The type of a constant can also be explicitly set
by using a type suffix (ie, !, % or $) but it must agree with its assigned value.

Special Characters in Strings
Special, non-printable characters can be inserted in string constants using the backslash (ie, \) as an escape

symbol. To enable this facility the command OPTION ESCAPE must be placed at the start of the program.
This can be used when setting the value of a string or in DATA statements containing quoted strings. For
backward compatability the use of \ as an escape character must be enabled by entering OPTION ESCAPE at
the beginning of the program. OPTION ESCAPE can be entered at the command line for use on the command
line, but will be reset when the RUN command is called. The use in a program requires the OPTION ESCAPE
set within the program.

MMBasic is agnostic to the use of a forward slash (/) or back slash (\) as a directory separator for file
operations. Internally these are all converted to a forward slash. (/). However, if using the escape option any

Page 30 Colour Maximite 2 User Manual Page 30

filename that is first entered into a string variable that is then used in a file operation should use a forward
slash, as the string variable would treat any backslash as an escape character before it is passed to the file
operation. Either a/ or \ is acceptable if entering a literal filename directly into the file operation.

The MMEdit variable report (Program-> Display Variable Report) can be used to identify lines where the
escape character is used when verifying if an exsisting program can safely use OPTION ESCAPE.

Escape Hex value ASCII Character represented
Sequence Value

\a 07 Alert (Beep, Bell)

\b 08 Backspace

\e 1B Escape character

\f ocC Formfeed Page Break

\n 0A Newline (Line Feed); see notes below

\r 0D Carriage Return

\q 22 Quote symbol

\t 09 Horizontal Tab

\v 0B Vertical Tab

\\ 5C Backslash

\nnn 1-255 The byte whose numerical value is given by nnn interpreted as a decimal number
\000 is not accepted. Use CHR$(0)

\&hh 01-FF The byte whose numerical value is given by hh interpreted as a hexadecimal number

\&00 is not accepted. Use CHR$(0)
For example, the following will print the words Hello and World on separate lines:
OPTION ESCAPE
PRINT “Hello\r\nWorld

Expressions and Operators

MMBasic will evaluate a mathematical expression using the standard mathematical rules. For example,
multiplication and division are performed first followed by addition and subtraction. These are called the rules
of precedence and are detailed below.

This means that 2 + 3 * 6 will resolve to 20, sowill 5* 4 and also 10 + 4 * 3 - 2.

If you want to force the interpreter to evaluate parts of the expression first you can surround that part of the
expression with brackets. For example, (10 + 4) * (3 — 2) will resolve to 14 not 20 as would have been the case
if the brackets were not used. Using brackets does not appreciably slow down the program so you should use
them liberally if there is a chance that MMBasic will misinterpret your intension.

The following operators, in order of precedence, are implemented in MMBasic. Operators that are on the same
level (for example + and -) are processed with a left to right precedence as they occur on the program line.

Page 31 Colour Maximite 2 User Manual Page 31

Arithmetic operators:

A Exponentiation (eg, b/*n means b")
* [\ MOD Multiplication, division, integer division and modulus (remainder)
+ - Addition and subtraction

Shift operators:

X<<y X>>y These operate in a special way. << means that the value returned
will be the value of x shifted by y bits to the left while >> means the
same only right shifted. They are integer functions and any bits
shifted off are discarded. For a right shift any bits introduced are set
to the value of the top bit (bit 63). For a left shift any bits introduced
are set to zero.

Logical operators:

NOT INV invert the logical value on the right (eg, NOT a=b is a<>b)
or bitwise inversion of the value on the right (eg, a = INV b)

<> < > <= =< Inequality, less than, greater than, less than or equal to, less than or

>= = equal to (alternative version), greater than or equal to, greater than or
equal to (alternative version)

= equality

AND OR XOR Conjunction, disjunction, exclusive or

For Microsoft compatibility the operators AND, OR and XOR are integer bitwise operators. For example,
PRINT (3 AND 6) will output the number 2. Because these operators can act as both logical operators (for
example, IF a=5 AND b=8 THEN ...) and as a bitwise operators (eg, y% = x% AND &B1010) the interpreter
will be confused if they are mixed in the same expression. So, always evaluate logical and bitwise expressions
in separate expressions.

The other logical operations result in the integer 0 (zero) for false and 1 for true. For example the statement
PRINT 4 >= 5 will print the number zero on the output and the expression A = 3 > 2 will store +1 in A.

The NOT operator will invert the logical value on its right (it is not a bitwise invert) while the INV operator

will perform a bitwise invert. Both of these have the highest precedence so they will bind tightly to the next

value. For normal use of NOT or INV the expression to be operated on should be placed in brackets. Eg:
IF NOT (A = 3 OR A = 8) THEN ..

String operators:

+ Join two strings
<> < > <= =< Inequality, less than, greater than, less than or equal to, less than or
>= => equal to (alternative version), greater than or equal to, greater than or

equal to (alternative version)

= Equality

String comparisons respect case. For example "A" is greater than "a".

Mixing Floating Point and Integers

MMBasic automatically handles conversion of numbers between floating point and integers. If an operation
mixes both floating point and integers (eg, PRINT A% + B1) the integer will be converted to a floating point
number first, then the operation performed and a floating point number returned. If both sides of the operator
are integers then an integer operation will be performed and an integer returned.

The one exception is the normal division ("/") which will always convert both sides of the expression to a
floating point number and then returns a floating point number. For integer division you should use the integer
division operator "\".

MMBasic functions will return a float or integer depending on their characteristics. For example, PIN() will
return an integer when the pin is configured as a digital input but a float when configured as an analog input.

Page 32 Colour Maximite 2 User Manual Page 32

If necessary you can convert a float to an integer with the INT() function. It is not necessary to specifically
convert an integer to a float but if it was needed the integer value could be assigned to a floating point variable
and it will be automatically converted in the assignment.

64-bit Unsigned Integers

MMBasic on the Colour Maximite 2 supports 64-bit signed integers. This means that there are 63 bits for
holding the number and one bit (the most significant bit) which is used to indicate the sign (positive or
negative). However it is possible to use full 64-bit unsigned numbers as long as you do not do any arithmetic
on the numbers.

64-bit unsigned numbers can be created using the &H, &0 or &B prefixes to a number and these numbers can
be stored in an integer variable. You then have a limited range of operations that you can perform on these.
They are << (shift left), >> (shift right), AND (bitwise and), OR (bitwise or), XOR (bitwise exclusive or), INV
(bitwise inversion), = (equal to) and <> (not equal to). Arithmetic operators such as division or addition may
be confused by a 64-bit unsigned number and could return nonsense results.

Note that shift right is a signed operation. This means that if the top bit is a one (a negative signed number) and
you shift right then it will shift in ones to maintain the sign.

To display 64-bit unsigned numbers you should use the HEX$(), OCT$() or BIN$() functions.

For example, the following 64-bit unsigned operation will return the expected results:

X% = &HFFFFO000FFFF0044
Y% = &H800FFFFFFFFFFFFF
X% = X% AND Y%

PRINT HEX$(X%, 16)
Will display *'800FO000FFFF0044"

Page 33 Colour Maximite 2 User Manual Page 33

Subroutines and Functions

A program defined subroutine or function is simply a block of programming code that is contained within a
module and can be called from anywhere within your program. It is the same as if you have added your own
command or function to the language.

Subroutines

A subroutine acts like a command and it can have arguments (sometimes called a parameter list). In the
definition of the subroutine they look like this:
SUB MYSUB argl, arg2$, arg3
<statements>
<statements>
END SUB

And when you call the subroutine you can assign values to the arguments. For example:
MYSUB 23, "Cat', 55

Inside the subroutine argl will have the value 23, arg2$ the value of "*Cat'*, and so on. The arguments act
like ordinary variables but they exist only within the subroutine and will vanish when the subroutine ends. You
can have variables with the same name in the main program and they will be hidden by the arguments defined
for the subroutine.

When calling a subroutine you can supply less than the required number of values and in that case the missing
values will be assumed to be either zero or an empty string. You can also leave out a value in the middle of the
list and the same will happen. For example:

MYSUB 23, , 55
Will result in arg2$ being set to the empty string **** .

Rather than using the type suffix (eg, the $ in arg2$) you can use the suffix AS <type> in the definition of the
subroutine argument and then the argument will be known as the specified type, even when the suffix is not
used. For example:

SUB MYSUB argl, arg2 AS STRING, arg3
IF arg2 = "Cat'™ THEN ..
END SUB

Local Variables

Inside a subroutine you can define a variable using LOCAL (which has the same syntax as DIM). This variable
will only exist within the subroutine and will vanish when the subroutine exits. You can have a variable in
your main program with the same name but it will be hidden and the local variable used while the subroutine is
executed.

If you do not declare the variable as LOCAL within the subroutine and OPTION EXPLICIT is not in force it
will be created as a global variable and be visible in your main program and subroutines, just like a normal
variable declared outside a subroutine or function.

Functions

Functions are similar to subroutines with the main difference being that the function is used to return a value in
an expression. The rules for the argument list in a function are similar to subroutines. The only difference is
that brackets are required around the argument list when you are calling a function, even if there are no
arguments (they are optional when calling a subroutine).

To return a value from the function you assign a value to the function's name within the function. If the
function's name is terminated with a $, a % or a ! the function will return that type, otherwise it will return
whatever the OPTION DEFAULT is set to. You can also specify the type of the function by adding AS <type>
to the end of the function definition.

For example:
FUNCTION Fahrenheit(C) AS FLOAT
Fahrenheit = C * 1.8 + 32
END FUNCTION

Page 34 Colour Maximite 2 User Manual Page 34

Passing Arguments by Reference or by Value

If you use an ordinary variable (ie, not an expression) as the value when calling a subroutine or a function, the
argument within the subroutine/function will point back to the variable used in the call and any changes to the
argument will also be made to the supplied variable. This is called passing arguments by reference.
For example, you might define a subroutine to swap two values, as follows:
SUB Swap a, b
LOCAL t
t a
a=»>b
b=t
END SUB

In your calling program you would use variables for both arguments:
Swap nbrl, nbr2

And the result will be that the values of nbrl and nbr2 will be swapped.

For this to work the type of the variable passed (eg, nbr1) and the defined argument (eg, a) must be the same
(in the above example both default to float).

If you want to use an argument as a general purpose variable inside a subroutine or function (ie, change its
value) you should prefix its definition with the keyword BYVAL. This instructs MMBasic to always use the
value of the argument, even if it is a variable, and to never point back to the variable used in the call. This is
because another user of your routine may unwittingly use a variable in their call and that variable could be
"magically” changed by your routine if you did not use BYVAL.

Using the BYREF keyword ensures a variable is passed by reference. An error is returned if this is not possible.
e.g. The variable is not the same type as defined in the SUB header.

Passing Arrays

Single elements of an array can be passed to a subroutine or function and they will be treated the same as a
normal variable. For example, this is a valid way of calling the Swap subroutine (discussed above):

Swap dat(i), dat(i + 1)
This type of construct is often used in sorting arrays.

You can also pass one or more complete arrays to a subroutine or function by specifying the array with empty
brackets instead of the normal dimensions. For example, a(). In the subroutine or function definition the
associated parameter must also be specified with empty brackets. The type (ie, float, integer or string) of the
argument supplied and the parameter in the definition must be the same.

In the subroutine or function the array will inherit the dimensions of the array passed and these must be
respected when indexing into the array. If required the dimensions of the array could be passed as additional
arguments to the subroutine or function so it could correctly manipulate the array. The array is passed by
reference which means that any changes made to the array within the subroutine or function will also apply to
the supplied array.
For example, when the following is run the words "Hello World" will be printed out:

DIM MyStr$(5, 5)

MyStr$(4, 4) = "Hello™ : MyStr$(4, 5) = "World"

Concat MyStr$Q)

PRINT MyStr$(0, 0)

SUB Concat arg$()
arg$(0,0) = arg$4, 4) + " " + arg$(4, 5)
END SUB

Early Exit

There can be only one END SUB or END FUNCTION for each definition of a subroutine or function. To exit
early from a subroutine (ie, before the END SUB command has been reached) you can use the EXIT SUB
command. This has the same effect as if the program reached the END SUB statement. Similarly you can use
EXIT FUNCTION to exit early from a function.

Page 35 Colour Maximite 2 User Manual Page 35

Recursion

Recursion is where a subroutine or function calls itself. You can do recursion in MMBasic but there are a
number of issues (these are a direct consequence of the limitations of microcontrollers and the BASIC
language):
e There is a fixed limit to the depth of recursion. In the Colour Maximite 2 this is 50 levels.
o If you have many arguments to the subroutine or function and many LOCAL variables (especially strings)
you could easily run out of memory before reaching the 50 level limit.
e Any FOR...NEXT loops and DO...LOOPs will be corrupted if the subroutine or function is recursively
called from within these loops.

Examples

There is often the need for a special command or function to be implemented in MMBasic but in many cases
these can be constructed using an ordinary subroutine or function which will then act exactly the same as a built
in command or function.

For example, sometimes there is a requirement for a TRIM function which will trim specified characters from
the start and end of a string. The following provides an example of how to construct such a simple function in
MMBasic.

The first argument to the function is the string to be trimmed and the second is a string containing the
characters to trim from the first string. RTrim$() will trim the specified characters from the end of the string,
LTrim$() from the beginning and Trim$() from both ends.

" trim any characters in c$ from the start and end of s$
Function Trim$(s$, c9$)

Trim$ = RTrim$(LTrim$(s$, c$), c$)
End Function

" trim any characters in c$ from the end of s$
Function RTrim$(s$, c$)
RTrim$ = s$
Do While Instr(c$, Right$(RTrim$, 1))
RTrim$ = Mid$(RTrim$, 1, Len(RTrim$) - 1)
Loop
End Function

" trim any characters in c$ from the start of s$
Function LTrim$(s$, c$)
LTrim$ = s$
Do While Instr(c$, Left$(LTrim$, 1))
LTrim$ = Mid$(LTrim$, 2)
Loop
End Function

As an example of using these functions:
S$ = " F***23.56700 '
PRINT Trim$(s$, ™ ™)

Will give "****23 56700"
PRINT Trim$(s$, "™ *0)

Will give "23.567"
PRINT LTrim$(s$, " *0™)

Will give "23.56700"

Page 36 Colour Maximite 2 User Manual Page 36

Graphics Functions

These commands and functions you can use within MMBasic to draw images on the VGA monitor (none of
these apply to the serial console).

There are also a number of advanced commands designed for programmers writing games (such as MODE,
BLIT and SPRITE) however this section will focus on the standard commands used by most programmers.

Screen Coordinates

All screen coordinates and measurements on the screen are done in terms of pixels with the X coordinate being
the horizontal position and Y the vertical position. The top left corner of the screen has the coordinates X=0
and Y =0 and the values increase as you move down and to the right of the screen.

By default on startup the VGA output will be set to 800x600 pixels with each pixel supporting 256 different
colours. At this resolution the bottom right pixel will be at X =799 and Y = 599.

Read Only Variables
There are six read only variables which provide useful information about the VGA video output:

e MM. HRES
Returns the width of the display (the X axis) in pixels.
e MM. VRES
Returns the height of the display (the Y axis) in pixels.
e MM.INFO(FONTHEIGHT)
Returns the height of the current font (in pixels). All characters in a font have the same height.
e MM.INFO(FONTWIDTH)

Returns the width of a character in the current font (in pixels). All characters in a font have the same
width.

¢ MM.INFO(HPOS)
Returns the X coordinate of the text cursor (ie, the horizontal location (in pixels) of where the next
character will be printed on the VGA monitor)

¢ MM.INFO(VPOS)
Returns the Y coordinate of the text cursor (ie, the vertical location (in pixels) of where the next
character will be printed on the VGA monitor)

Colours

Colour is specified as a true colour 24 bit number where the top eight bits represent the intensity of the red
colour, the middle eight bits the green intensity and the bottom eight bits the blue. For example the colour red
is &HFF0000 and yellow is &HFFFFOO.

An easier way to generate a colour value is to use the RGB() function which has the form:
RGB(red, green, blue)

A value of zero for a colour represents black and 255 represents full intensity.

The RGB() function also supports a shortcut where you can specify common colours by naming them. For
example, RGB(red) or RGB(cyan). The colours that can be named using the shortcut form are white black,
blue, green, cyan, red, magenta, yellow, brown, white, orange, pink, gold, salmon, beige, lightgrey and grey (or
USA spelling gray/lightgray).

In addition there is a special colour NOTBLACK. For any mode this will be the darkest colour that can be
displayed that will not act as transparent when manipulated by graphics commands that support transparency.

Because the Colour Maximite 2 uses double precision floating point it can store the 24 bit number representing
colour (i.e. returned by the RGB() function) in either a floating point variable or an integer variable.

MMBasic will automatically convert colours to the format required for the current colour depth set by the
MODE command. So, for example, at startup the Colour Maximite 2's VGA output defaults to 8-bit colour and
in this case the 16777215 colours that can be represented by a 24-bit colour specification will be translated as
best as possible to the 256 colours supported by the 8-bit colour mode. Other VGA display modes can support
up to 24-hit colour (in the Generation 2 version) loss of information.

Page 37 Colour Maximite 2 User Manual Page 37

The default colour for commands that require a colour parameter can be set with the COLOUR command. This
is handy if your program uses a consistent colour scheme, you can then set the defaults and use the short

version of the drawing commands throughout your program (the USA spelling COLOR is also accepted).

The COLOUR command takes the format:
COLOUR foreground-colour, background-colour

Fonts

There are seven built in fonts. These are:

Font Size Character Descrintion
Number | (width x height) Set P
1 8x 12 All 95 ASCII characters | Standard font (default on startup). Default font for the
plus 7F to FF (hex) editor
2 12 x 20 All 95 ASCII characters | Medium sized font
3 16 x 24 All 95 ASCII characters | A larger font useful for the 800 x 600 display mode
All 95 ASCII characters | A useful font for improved clarity in high resolution
4 10x16
plus 7F to FF (hex) modes
5 24 x 32 All 95 ASCII characters | Large font, very clear
0 to 9 plus some Numbers plus decimal point, positive, negative,
6 32 x50
symbols equals, degree and colon symbols. Very clear.
7 6x8 All 95 ASCII characters | A small font useful when low resolutions are used.
In all fonts (including font #6) the back quote character (60 hex I "HEwe ' (1E+, -/
or 96 decimal) has been replaced with the degree symbol (°). B123456789: ;<=7
Font #1 (the default font) and font #4 have an extended FPABCDEFGHIJKLHMNDO
character set covering all characters from CHR$(32) to PORSTUUWXEYZLNIT™
CHR$(255) or 20 to FF (hex) as illustrated on the right. “abcdefohidklmno
If required, additional fonts can be embedded in a BASIC parstuuvwxygzil i™e
program. These fonts work exactly same as the built in font OLEEHEE g @ ¢zt W[F
(ie, selected using the FONT command or specified in the tetlseorRpgAe l ¥ X
TEXT command). @;@@0..€ﬂfr“';“!‘?°lzﬁﬂ||ﬁ
The format of an embedded font is: % % % | i 11in :||5 il !! E L_nl
_ TEF—1tEEItr2lmhi=u=
DefineFont #Nbr T Y2 s M EL
hex [[hex[..] =n P -
aBrrnZcAYy08Q65xx%En
hex[[hex[...] Eiz:{_%‘[ﬂ%g\.-\rnzlﬁ

END DefineFont

It must start with the keyword "DefineFont" followed by the font number (which may be preceded by an
optional # character). Any font number in the range of 2 to 5 and 8 to 16 can be specified and if it is the same
as a built in font it will replace that font. The body of the font is a sequence of 8-digit hex words with each
word separated by one or more spaces or a new line. The font definition is terminated by an "End DefineFont "
keyword. These can be placed anywhere in a program and MMBasic will skip over it. This format is the same
as that used by the Micromite.

Additional fonts and information can be found in the Embedded Fonts folder in the Colour Maximite 2
firmware download. These fonts cover a wide range of character sets including a symbol font (Dingbats) which
is handy for creating on screen icons, etc.

In addition to using embedded fonts a program can dynamically load one font from the SD card using the
LOAD FONT command. A program can load many fonts using this method during the course of its execution
but each new font will overwrite the previously loaded font.

The format of fonts loaded using LOAD FONT have a similar format as the embedded fonts described above
except that no comments or blank lines are allowed, the font number must always be #8, the first word must be
on a line on its own and the following lines (except the last) must have exactly eight words per line.

As an example, the following is a tiny (6x4 pixel) font that is useful in the 320x200 display mode. This can be
either loaded using LOAD FONT or embedded in the BASIC program:

Page 38 Colour Maximite 2 User Manual

Page 38

60200604
44000000
OOE404A0
EAGBEOE2
4A60E84A
AOCAAA40
A4AAGOAA
0C000084
AOCC8AA4
AEOAGOAA

DefineFont #8

00A04040
00800400
8048E2EO
CACAAOQOEA
AEE08888
AOEEAA40
AABCEOGA
OEE044C4
EOAEOA40

AOAEAEOO
040000EO
EAEOEAEA
608868C0
EEAEAOQEA
AAAO4AAA
608806CO0
AAOCAOQOEE
OAAO0440A

82406C6C
00480240
0404COE2
ESCOAACA
40AA4AAQ
48E24044
0660AA26
40AA04A0
6COE24A6

EACC2048
4CEOAAEA
80040400
ESESEOES
4A80C8CA
EO88ESEO
E42460AC
06C8AAQOC
608464E0

00004460
48C24044
OE208424
60EAG880
ECCAGOAE
E2004208
24AE0640
880662AA
C4400444

84204424
C062C2EO
2484000E
E4AOEAAA
C04268A0
0O04AE022
40A0CA88
C0C60680
006CC024

E4A48044
E820E2AA
4040E280
2A22E044
AA4044E4
FOO00000
22204044
0A60444E
EOEEEEOO

End DefineFont

You can convert the original Colour Maximite’s font files to this format using the program FontTweak from:
https://www.c-com.com.au/MMedit.htm

Drawing Commands

The drawing commands have optional parameters. You can completely leave these off the end of a command
or you can use two commas in sequence to indicate a missing parameter. For example, the fifth parameter of
the LINE command is optional so you can use this format:

LINE 0, O, 100, 100, , rgb(red)
Optional parameters are indicated below by italics, for example: font.

In the following commands C is the drawing colour and defaults to the current foreground colour. FILL is the
fill colour which defaults to -1 which indicates that no fill is to be used.

The drawing commands are:

o CLS C
Clears the screen to the colour C. If C is not specified the current default background colour will be used.

o PIXEL X, Y, C
Illuminates a pixel. If C is not specified the current default foreground colour will be used.

o LINE X1, Y1, X2, Y2, LW, C
Draws a line starting at X1 and Y1 and ending at X2 and Y2.
LW is the line’s width and is only valid for horizontal or vertical lines. It defaults to 1 if not specified or is
changed to 1 if the line is a diagonal.

o BOX X, Y1, W, H, LW, C, FILL
Draws a box starting at X and Y1 which is W pixels wide and H pixels high.
LW is the width of the sides of the box and can be zero. It defaults to 1.

o RBOX X, Y1, W, H, R, C, FILL
Draws a box with rounded corners starting at X and Y1 which is W pixels wide and H pixels high.
R is the radius of the corners of the box. It defaults to 10.

o TRIANGLE X1, Y1, X2, Y2, X3, Y3, C, FILL
Draws a triangle with the corners at X1, Y1 and X2, Y2 and X3, Y3. C is the colour of the triangle and
FILL is the fill colour. FILL can omitted or be -1 for no fill.

o CIRCLE X, Y, R, LW, A, C, FILL
Draws a circle with X and Y as the centre and a radius R. LW is the width of the line used for the
circumference and can be zero (defaults to 1). A is the aspect ratio which is a floating point number and
defaults to 1. For example, an aspect of 0.5 will draw an oval where the width is half the height.

o ARC x, y, rl, r2, al, a2, c
Draws an arc with the centre at x and y, rl1 and r2 are the inner and outer radius defining the thickness of
the arc (if they are the same the arc will be one pixel thick), al and a2 are the start and end angles in
degrees and c is the colour.

o POLYGON n, xarray%(), yarray%(), C , FILL
Draws a outline or filled polygon defined by the x, y coordinate pairs in xarray%() and yarray%(). 'n'is the

Page 39 Colour Maximite 2 User Manual Page 39

https://www.c-com.com.au/MMedit.htm

number of points to use in drawing the polygon. If the last xy-coordinate pair is not the same as the first the
firmware will automatically create an additional xy-coordinate pair to complete the polygon.

o TEXT X, Y, STRING, ALIGNMENT, FONT, SCALE, C, BC
Displays a string starting at X and Y. ALIGNMENT is 0, 1 or 2 characters (a string expression or variable
is also allowed) where the first letter is the horizontal alignment around X and can be L, C or R for LEFT,
CENTER or RIGHT aligned text and the second letter is the vertical alignment around Y and can be T, M
or B for TOP, MIDDLE or BOTTOM aligned text. The default alignment is left/top. FONT and SCALE
are optional and default to that set by the FONT command. C is the drawing colour and BC is the
background colour. They are optional and default to that set by the COLOUR command.

Most graphics commands allow the use of arrays as parameters so that you can draw multiple graphic objects
with the one command. In this case the array is passed as the array name followed by empty brackets (eg
arr()). Drawing multiple graphic elements this way is much faster than drawing them one by one using
separate commands.

For example, the PIXEL command allows arrays to be specified for the x and y coordinates (in this case both
must be arrays). The firmware will then plot the number of pixels as determined by the dimensions of the
smallest array. For the PIXEL command ‘'c' can also be an array or a single variable/constant.

This is demonstrated with the following example which will draw three pixels in different colours:

DIM xx(2) = (10, 20, 30)
DIM yy(2) = (100, 150, 200)
DIM cc(2) = (RGB(red), RGB(green), RGB(blue))

PIXEL xx(Q, yyQ., ccQ

Example of Basic Graphics
As an example, the following program will draw a simple digital clock on the VGA monitor.

CLS

CONST DBlue = RGB(0O, 0, 128) * A dark blue colour
COLOUR RGB(GREEN), RGB(BLACK) " Set the default colours
FONT 6 " Set the default font
BOX 0, 0, MM.HRes-1, MM.VRes/2, 3, RGB(RED), DBlue

DO

TEXT MM.HRes/2, MM.VRes/4, TIME$, "CM", 6, 1, RGB(CYAN), DBlue
TEXT MM.HRes/2, MM.VRes*3/4, DATE$, "CM™
LOOP

The program starts by defining a constant with a value corresponding to a dark blue colour and then sets the
defaults for the colours and the font. It then draws a box with red walls and a dark blue interior. Following this
the program enters a continuous loop where it performs two functions:

1. Displays the current time inside the previously drawn box. The string
is drawn centred both horizontally and vertically in the middle of the 12:30:03
box. Note that the TEXT command overrides both the default font and
colours to set its own parameters.

2. Draws the date centred in the lower half of the screen. In this case the
TEXT command uses the default font and colours previously set. 23-12-2019

The screenshot on the right shows the result.

Rotated Text

As described above the alignment of the text in the TEXT command can be specified by using one or two
characters. In addition a third character can be used to indicate the rotation of the text. This character can be
one of:

N for normal orientation

V for vertical text with each character under the previous running from top to bottom.
I the text will be inverted (ie, upside down)

U the text will be rotated counter clockwise by 90°

D the text will be rotated clockwise by 90°

Page 40 Colour Maximite 2 User Manual Page 40

As an example, the following will display the words "Vertical Text" vertically down the left hand margin of the
monitor and centred vertically:

TEXT 0, 250, *"Vertical Text", "LMV*", 5

Positioning is relative to the top left corner of the character when viewed normally so inverted 100,100 will
have the top left pixel of the first character at 100,100 and the text will then be above y=101 and to the left of
x=101. Similarly “R” in the alignment string is viewed from the perspective of the character in whatever
orientation it is in.

Transparent Text

The TEXT command will allow the use of -1 for the background colour. This means that the text is drawn over
the background with the background image showing through the gaps in the letters.

Displaying Images
Using the LOAD command you can load an image from the SD card and display it on the VGA monitor.
Supported formats are BMP, GIF, JPG and PNG and the image can be positioned anywhere on the screen.

There are some limitations on the format of the images and these are detailed in the commands later in this
manual. The most flexible is the LOAD BMP command which supports all types of the BMP format including
black and white and true colour 24-bit images. The image can be positioned anywhere on the screen and be of
any size (pixels that end up being positioned off the screen and will be ignored).

Advanced Graphics Tutorial

The graphics subsystem in the Colour Maximite 2 has many advanced features such as multiple video pages,
layered images, sprites and sophisticated methods of manipulating images. Peter Mather, who developed the
graphics subsystem, has written a tutorial for games developers and advanced users.

This is presented as a series of posts on the Back Shed Forum and is recommended reading for users who need
to get into the details: https://www.thebackshed.com/forum/ViewTopic.php?FID=16&T1D=12125.

A PDF version of this Graphics Programming on the CMM2 is included in the Colour Maximite 2 firmware zip
file.

GUI Controls

The Colour Maximite 2 incorporates a suite of Pump Control
advanced graphic controls that respond to input from
a mouse. These include on screen switches, buttons,
indicator lights, keyboard, etc. MMBasic will draw
the control and animate it (i.e. a switch will appear to
depress when activated). All that the BASIC program
needs to do is invoke a single line command to
specify the basic details of the control. These
functions make it easy to create a control panel to
manage any control functions like a lathe, motor
controller, heating system, small industrial process O High
and so on.

The GUI Controls functions are described in detail in the document GUI Controls and Programming.pdf
which is included in the firmware download file. GUI Controls and Programming

3D Engine

The 3D Engine includes ten commands for manipulating 3D images including setting the camera, creating,
hiding, rotating, etc. See the document The 3D engine.pdf in the CMM2 firmware download for a full
description of these commands and how to use them. The 3D Engine.

This thread on the Back Shed Forum gave the initial explanation of the 3D Engine
https://www.thebackshed.com/forum/ViewTopic.php?TID=13139&P=1 and may have later updates or
examples.

Page 41 Colour Maximite 2 User Manual Page 41

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12125
https://fruitoftheshed.com/wiki/lib/exe/fetch.php?media=mmbasic_hardware:cmm2:graphics_programming_on_the_cmm2-v3d.pdf
https://fruitoftheshed.com/wiki/lib/exe/fetch.php?media=mmbasic_hardware:cmm2:gui_controls_and_programming.pdf
https://fruitoftheshed.com/wiki/lib/exe/fetch.php?media=mmbasic_hardware:cmm2:the_3d_engine.pdf
https://www.thebackshed.com/forum/ViewTopic.php?TID=13139&P=1

SD Card Support

The Colour Maximite 2 has full support for programs, files and directories on the SD card. This includes
opening files for reading, writing or random access and editing and running programs.

MMBasic will work with cards up to 128GB in capacity. Cards larger than 32GB should be formatted as
exFAT and cards 32GB or less formatted as FAT32. The recommended size is 8GB formatted as FAT32.

In the following note that:

e The filename can be a string expression, variable or constant. If it is a constant the string must be quoted
(eg, KILL "MYPROG.BAS"). The exception is the RUN command where only a constant is allowed.

e Long file/directory names are supported in addition to the old 8.3 format.

e The maximum file/path length is 127 characters.

o Upper/lowercase characters and spaces are allowed although the file system is not case sensitive.

e Directory paths are allowed in file/directory strings. (ie, OPEN "/dirl/dir2/file.txt" FOR ...).

e Forward slashes or back slashes are valid in paths between directories. Eg /dir/file.txt or \dir\file.txt.
e The current MMBasic time is used for file create and last access times.

e Up to ten files can be simultaneously open.

¢ Input and output commands and functions can also use file #0 which refers to the console.

There are 34 commands and functions related to the SD card. See the Commands/Functions section later in this
manual for their full description):

Program Management Commands

All programs reside on the SD card and so it must be present when running, editing and listing programs. This
is different from the original Maximite where the SD card was not necessarily required.

0 RUN “prog”
Run a program. ‘prog’ must be a string constant (ie, not a variable).

01 EDIT fname$
Edit a program or text file.

o LIST fname$
List on the console a program or text file.

0 AUTOSAVE fname$
Receive a file streamed by a computer connected to the serial console.

0 XMODEM RECEIVE fname$
Receive a file from a computer connected to the serial console using the XModem protocol.

00 XMODEM SEND fname$
Send a file to a computer connected to the serial console using the XModem protocol.

File Access Within a Program
Except for INPUT, LINE INPUT and PRINT the # in #fnbr is optional and may be omitted.

o OPEN fname$ FOR mode AS #fnbr
Opens a file for reading or writing. 'fname$' is the file name, 'mode' can be INPUT, OUTPUT, APPEND
or RANDOM, ‘fnbr’ is the file number (1 to 10).

O PRINT #fnbr, expression [[,; Jexpression] ... etc
Outputs text to the file opened as #fnbr.

0O INPUT #fnbr, list of variables
Read a list of comma separated data into the variables specified from the file previously opened as #fnbr.

O SEEK #fnbr, pos
Will position the read/write pointer in a file that has been opened for RANDOM access to the 'pos' byte.

Page 42 Colour Maximite 2 User Manual Page 42

0 LINE INPUT #fnbr, variable$
Read a complete line into the string variable specified from the file previously opened as #fnbr.

0 CLOSE #fnbr [#fnbr] ...
Close the file(s) previously opened with the file number “‘#fnbr’.

Also there are a number of functions that support the above commands.

O INPUTS(nbr, #fnbr)
Will return a string composed of a number of characters read from a file previously opened for INPUT.

0O EOF(#fnbr)
Will return true if the file previously opened for INPUT with the file number “#fnbr’ is positioned at the
end of the file.

0 LOC(#fnbr)
For a file opened as RANDOM this will return the current position of the read/write pointer in the file.

0O LOF(#fnbr)
Will return the current length of the file in bytes

File and Directory Management

0 LIST FILES [wildcard] [,sortorder]
Search the current directory and list the files/directories found.

0 KILL fname$
Delete a file.

0 COPY oldfile$ TO newfile$
Copy afile.

o0 RENAME oldfile$ AS newfile$
Rename a file.

01 MKDIR dname$
Make a sub directory.

1 CHDIR dname$
Change into to the directory $dname. $dname can also be ".." (dot dot) for up one directory or "/* for the
root directory.

o RMDIR dir$
Remove, or delete, the directory ‘dir$’.

And there are two functions that are handy for searching and managing files/directories.

o DIRS$(fspec, type)
Will search an SD card for files and return the names of the entries found.

O MM.INFO(function)
Returns many types of information related to the SD card (size, free space, file size, etc).

Play Audio Files

0 PLAY WAV | FLAC | MP3 file$ [, interrupt]
Play a WAV, FLAC or MP3 audio file on the stereo audio output.

0 PLAY MODFILE file$
Play a MOD file on the stereo audio output.

0 PLAY EFFECT filename$ [,interrupt]
Play a WAV file at the same time as a MOD file is playing.

Page 43 Colour Maximite 2 User Manual Page 43

Load and Save Images

00 LOAD BMP | GIF | JPG | PNG fname$
Load a BMP, GIF, JPG or PNG image and display it on the VGA monitor.

0 SAVE IMAGE fname$
Save the current VGA monitor’s screen image as a BMP file.

Sequential File Access

Sequential input/output is the standard method of reading or writing to a file and the easiest to understand.
When a file is opened it is read from the beginning character by character or line by line. Similarly, when a file
is opened for writing the output is sequentially added to the end of the file. This method is often used for
recording data or saving temporary information.

In the example below a file is created and two lines are written to the file (using the PRINT command). The
file is then closed.

OPEN "fox.txt" FOR OUTPUT AS #1
PRINT #1, "The quick brown fox"
PRINT #1, "jumps over the lazy dog"
CLOSE #1

You can read the contents of the file using the LINE INPUT command. For example:

OPEN "fox.txt"™ FOR INPUT AS #1
LINE INPUT #1,a$

LINE INPUT #1,b$

CLOSE #1

LINE INPUT reads one line at a time so the variable a$ will contain the text "The quick brown fox" and b$
will contain "jumps over the lazy dog".

Another way of reading from a file is to use the INPUT$() function. This will read a specified number of
characters. For example:

OPEN "fox.txt" FOR INPUT AS #1
ta$ = INPUTS(12, #1)

th$ = INPUTS(3, #1)

CLOSE #1

The first INPUT$() will read 12 characters and the second 3 characters. So the variable ta$ will contain "The
quick br" and the variable tb$ will contain "own".

Files normally contain just text and the print command will convert numbers to text. So in the following
example the first line will contain the line "123" and the second "56789".

nbrl = 123 : nbr2 = 56789

OPEN "numbers.txt"™ FOR OUTPUT AS #1
PRINT #1, nbril

PRINT #1, nbr2

CLOSE #1

Again you can read the contents of the file using the LINE INPUT command but then you would need to
convert the text to a number using VAL(). For example:

OPEN "numbers.txt" FOR INPUT AS #1
LINE INPUT #1, a$

LINE INPUT #1, b$

CLOSE #1

x = VAL(a$) : y = VAL(b$)

Following this the variable x would have the value 123 and y the value 56789.

Page 44 Colour Maximite 2 User Manual Page 44

Random File Access

Random access allows the program to jump around within a file so that sections in the middle (ie, not at the
end) can be read or written. This method is often used for database type applications where the file consists of
many records which have the same fixed length.

For random access the file should be opened with the keyword RANDOM. For example:
OPEN "filename'"™ FOR RANDOM AS #1

To seek to a record within the file you would use the SEEK command which will position the read/write
pointer to a specific byte. The first byte in a file is numbered one so, for example, the fifth record in a file that
uses 64 byte records would start at byte 257. In that case you would use the following to point to it:

SEEK #1, 257

When reading from a random access file the INPUT$() function should be used as this will read a fixed number
of bytes (ie, a complete record) from the file. For example, to read a record of 64 bytes you would use:

dat$ = INPUT$(64, #1)

When writing to the file a fixed record size should be used and this can be easily accomplished by adding
sufficient padding characters (normally spaces) to the data to be written. For example:

PRINT #1, dat$ + SPACE$(64 — LEN(dat$);

The SPACES() function is used to add enough spaces to ensure that the data written is an exact length (64 bytes
in this example). The semicolon at the end of the print command suppresses the addition of the carriage return
and line feed characters which would make the record longer than intended.

Two other functions can help when using random file access. The LOC() function will return the current byte
position of the read/write pointer and the LOF() function will return the total length of the file in bytes.

The following program demonstrates random file access. Using it you can append to the file (to add some data
in the first place) then read/write records using random record numbers. The first record in the file is record
number 1, the second is 2, etc.

RecLen = 64
OPEN ""test.dat™ FOR RANDOM AS #1
DO

abort: PRINT
PRINT "Number of records in the file =" LOF(#1)/RecLen
INPUT "Command (r = read,w = write, a = append, q = quit): ", cmd$
IF cmd$ = "g" THEN CLOSE #1 : END
IF cmd$ = "a"™ THEN
SEEK #1, LOF(#1) + 1
ELSE
INPUT *""Record Number: **, nbr
IF nbr < 1 or nbr > LOF(#1)/RecLen THEN PRINT "Invalid record" : GOTO abort
SEEK #1, RecLen * (nbr - 1) + 1

ENDIF
IF cmd$ = "'r" THEN

PRINT "The record = " INPUT$(RecLen, #1)
ELSE

LINE INPUT "Enter the data to be written: ", dat$
PRINT #1,dat$ + SPACE$(RecLen - LEN(dat$));
ENDIF
LOOP

Random access can also be used on a normal text file. For example, this will print out a file backwards:

OPEN "File.txt" FOR RANDOM AS #1
FOR i = LOF(#1) TO 1 STEP -1
SEEK #1, i
PRINT INPUT$(1, #1);
NEXT i
CLOSE #1

Page 45 Colour Maximite 2 User Manual Page 45

Audio Output

The Colour Maximite 2 can play WAV, FLAC and MP3 files from the SD card, generate synthesised music in
the MOD format, create robot speech and sound effects as well as generate precise sine wave tones. All these
are outputted on the audio socket. The ARM Cortex-M7 chip includes its own DAC (digital to analog
converter) so an output filter network is not needed (as on the original Colour Maximite).

Playing WAV, MP3 and FLAC Files

The PLAY command will play an audio file residing on an SD card to the sound output. It can be used to
provide background music, add sound effects to programs and provide informative announcements.
The syntax of the command is one of the following depending of the format of the file:
PLAY WAV file$, interrupt
or PLAY MP3 file$, interrupt
or PLAY FLAC file$, interrupt

file$ is the name of the audio file to play. It must be on the SD card and the appropriate extension (eg .WAV)
will be appended if missing. The audio will play in the background (ie, the program will continue without
pause). interrupt is optional and is the name of a subroutine which will be called when the file has finished
playing. Most variations in encoding are supported (see the PLAY command in the command listing for the
details).

Background Music

If fname$ in the PLAY WAV/MP3/FLAC command is a directory then the firmware will list all the files of the
relevant type in that directory and start playing them one-by-one. To play files in the current directory use an
empty string (ie, ™). Each file listed will play in turn and the optional interrupt will fire when all files have
been played. The filenames are stored with full path so you can use CHDIR while tracks are playing without
causing problems. All files in the directory are listed if the command is executed at the command prompt but
the listing is suppressed in a program.

While playing in this background mode the user can edit programs, run programs, etc without interrupting the
playing of the music. Amongst other things this allows the Colour Maximite 2 to be used as a music player
while programming or doing other tasks.

Generating Sine Waves

The PLAY TONE command also uses the audio output and will generate sine waves with selectable
frequencies for the left and right channels. This feature is intended for generating attention catching sounds
but, because the frequency is very accurate, it can be used for many other applications. For example, signalling
DTMF tones down a telephone line or testing the frequency response of loudspeakers.

The syntax of the command is:
PLAY TONE left, right, duration, interrupt

left and right are the frequencies in Hz to use for the left and right channels. The tone plays in the background
(the program will continue running after this command) and 'dur' specifies the number of milliseconds that the
tone will sound for.

duration is optional and if not specified the tone will continue until explicitly stopped or the program
terminates. interrupt (if specified) will be triggered when the duration has finished.

The frequency can be from 1 Hz to 20 KHz and is very accurate (it is based on a crystal oscillator). The
frequency can be changed at any time by issuing a new PLAY TONE command. Note that the sine wave is
generated by stepping through a lookup table so to reduce the distortion the audio output should be passed
through a low pass filter.

Specialised Audio Output
There are a number of specialised audio commands that are mostly used in computer games.
These are:
e PLAY MODFILE which will play synthesised music using the MOD format.
e PLAY TTS command which will generate robotic speech.
e PLAY SOUND which will generate an output based on a mixture of sine, square, noise, etc waveforms.
e PLAY EFFECT command which will play a WAV at the same time as a MOD file is playing.

Page 46 Colour Maximite 2 User Manual Page 46

Using PLAY

It is important to realise that the PLAY command will generate the audio in the background. This allows a
program (for example) to play the sound of an explosion while still animating the visual of the explosion on the
screen. Without the background facility the whole computer would freeze while the sound was heard.

However, generating the audio in the background has some subtle inferences which can trip up newcomers.
For example, take the following program:

PLAY TONE 500, 500, 2000
END

You may expect the 500Hz tone to sound for 2 seconds but in practice it will not make any sound at all. This is
because MMBasic will execute the PLAY TONE command (which will start generating the sound in the
background) and then it will immediately continue and execute the END command which will terminate the
program and the background sound. This happens so fast that nothing is heard.

Similarly the following program will not work either:

PLAY TONE 500, 500, 2000
PLAY TONE 300, 300, 5000

This is because the first command will set a 500Hz the tone playing but then the second PLAY command will
immediately replace that with a 300Hz tone and following that the program will run off the end terminating the
program and the background audio resulting in nothing being heard.

If you want MMBasic to wait while the PLAY command is doing its thing you should use suitable PAUSE
commands. For example:

PLAY TONE 500, 500

PAUSE 2000

PLAY TONE 300, 300

PAUSE 5000

This applies to all versions of the PLAY command (eg, PLAY WAV/MP3/FLAC, etc).

Utility Commands
There are a number of commands that can be used to manage the sound output:

PLAY PAUSE Temporarily halt (pause) the currently playing file or tone.
PLAY RESUME Resume playing a file or tone that was previously paused.
PLAY STOP Terminate the playing of the file or tone. The sound output will also be

automatically stopped when the program ends.

PLAY VOLUME L, R Set the volume to between 0 and 100 with 100 being the maximum volume. The
volume will reset to the maximum level when a program is run.

The following commands can be used when playing a sequence of files (ie, "background music"):
PLAY NEXT Skip to the next file.
PLAY PREVIOUS Skip to the previous file.

Page 47 Colour Maximite 2 User Manual Page 47

Using the I/O pins

The 40-pin ribbon connector on the rear panel provides 28 input/output pins which can be controlled from
within the BASIC program with 12 of these supporting the measurement of voltage. An 1/O pin is referred to
by its pin number and these, and their capabilities, are listed towards the start of this manual in the section
External 1/0 Connector.

Digital Inputs

A digital input is the simplest type of input configuration. If the input voltage is higher than 2.5V the logic
level will be true (numeric value of 1) and anything below 0.65V will be false (numeric value of 0). The inputs
use a Schmitt trigger input so anything in between these levels will retain the previous logic level. Pins marked
as 5V are 5V tolerant and can be directly connected to a circuit that generates up to 5.5V without the need for
voltage dropping resistors.

In your BASIC program you would set the input as a digital input and use the PIN() function to get its level.
For example:

SETPIN 4, DIN
IF PIN(4) = 1 THEN PRINT "High"

The SETPIN command configures pin 4 as a digital input and the PIN() function will return the value of that
pin (the number 1 if the pin is high). The IF command will then execute the command after the THEN
statement if the input was high. If the input pin was low the program would just continue with the next line in
the program.

The SETPIN command also recognises a couple of options that will connect an internal resistor from the input
to either the supply or ground. This is called a "pullup” or "pulldown" resistor and is handy when connecting to
a switch as it saves having to install an external resistor to place a voltage across the contacts.

Analog Inputs

Pins marked as ANALOG can be configured to measure the voltage on the pin. The input range is from zero to
3.3V and the PIN() function will return the voltage. For example:

> SETPIN 23, AIN

> PRINT PIN(23)
2.345

>

You will need a voltage divider if you want to measure voltages greater than 3.3V. For small voltages you may
need an amplifier to bring the input voltage into a reasonable range for measurement.

The measurement uses 3.3V power supply to the CPU as its reference and it is assumed that this is exactly
3.3V. This value can be changed with the OPTION command.

Counting Inputs

The pins marked as COUNT can be configured as counting inputs to measure frequency, period or just count
pulses on the input.

For example, the following will print the frequency of the signal on pin 7:

> SETPIN 7, FIN
> PRINT PIN(7)
110374

>

In this case the frequency is 110.374 kHz.

By default the gate time is one second which is the length of time that MMBasic will use to count the number
of cycles on the input and this means that the reading is updated once a second with a resolution of 1Hz. By
specifying a third argument to the SETPIN command it is possible to specify an alternative gate time between
10 ms and 100000 ms. Shorter times will result in the readings being updated more frequently but the value
returned will have a lower resolution. The PIN() function will always return the frequency in Hz regardless of
the gate time used.

Page 48 Colour Maximite 2 User Manual Page 48

For example, the following will set the gate time to 10ms with a corresponding loss of resolution:

> SETPIN 7, FIN, 10
> PRINT PIN(7)
110300

>

For accurate measurement of signals less than 10 Hz it is generally better to measure the period of the signal.
When set to this mode the Colour Maximite 2 will measure the number of milliseconds between sequential
rising edges of the input signal. The value is updated on the low to high transition so if your signal has a period
of (say) 100 seconds you should be prepared to wait that amount of time before the PIN() function will return
an updated value.

The COUNTING pins can also count the number of pulses on their input. When a pin is configured as a
counter (for example, SETPIN 7,CIN) the counter will be reset to zero and Colour Maximite 2 will then
count every transition from a low to high voltage. The counter can be reset to zero again by executing the
SETPIN command a second time (even though the input was already configured as a counter).

There is also a fast counting input (pin 18) which has been tested up to 40MHz for frequency measurement and
counting. Note that period measurement is not available on this pin

Digital Outputs

All /O pins can be configured as a standard digital output. This means that when an output pin is set to logic
low it will pull its output to zero and when set high it will pull its output to 3.3V. In MMBasic this is done
with the PIN command. For example PIN(15) = O will set pin 15 to low while PIN(15) = 1 will set it
high.

The "OC" option on the SETPIN command makes the output pin open collector. This means that the output
driver will pull the output low (to zero volts) when the output is set to a logic low but will go to a high
impedance state when set to logic high. If you then connect a pull-up resistor to 5V (on pins that are 5V
tolerant) the logic high level will be 5V (instead of 3.3V using the standard output mode). The maximum pull-
up voltage in this mode is 5.5V.

Pulse Width Modulation

The PWM (Pulse Width Modulation) command allows the Colour Maximite 2 to generate square waves with a
program controlled duty cycle. By varying the duty cycle you can generate a program controlled voltage output
for use in controlling external devices that require an analog input (power supplies, motor controllers, etc). The
PWM outputs are also useful for driving servos and for generating a sound output via a small transducer.

There are two PWM controllers; the first has three outputs and the second two to give a total of five PWM
outputs.

When the Colour Maximite 2 is powered up or the PWM OFF command is used the PWM outputs will be set to
high impedance (they are neither off nor on). So, if you want the PWM output to be low by default (zero power
in most applications) you should use a resistor to pull the output to ground when it is set to high impedance.
Similarly, if you want the default to be high (full power) you should connect the resistor to 3.3V.

Interrupts

Interrupts are a handy way of dealing with an event that can occur at an unpredictable time. An example is
when the user presses a button. In your program you could insert code after each statement to check to see if
the button has been pressed but an interrupt makes for a cleaner and more readable program.

When an interrupt occurs MMBasic will execute a special section of code and when finished return to the main
program. The main program is completely unaware of the interrupt and will carry on as normal.

Any /O pin that can be used as a digital input can be configured to generate an interrupt using the SETPIN
command with up to ten interrupts active at any one time. Interrupts can be set up to occur on a rising or falling
digital input signal (or both) and will cause an immediate branch to the specified user defined subroutine. The
target can be the same or different for each interrupt. Return from an interrupt is via the END SUB or EXIT
SUB commands. Note that no parameters can be passed to the subroutine however within the interrupt
subroutine calls to other subroutines are allowed.

If two or more interrupts occur at the same time they will be processed in order of the interrupts as defined with
SETPIN. During the processing of an interrupt all other interrupts are disabled until the interrupt subroutine

Page 49 Colour Maximite 2 User Manual Page 49

returns. During an interrupt (and at all times) the value of the interrupt pin can be accessed using the PIN()
function.

Interrupts can occur at any time but they are disabled during INPUT statements. Also interrupts are not
recognised during some long hardware related operations (eg, the TEMPR() function) although they will be
recognised if they are still present when the operation has finished. When using interrupts the main program is
completely unaffected by the interrupt activity unless a variable used by the main program is changed during
the interrupt.

Because interrupts run in the background they can cause difficult to diagnose bugs. Keep in mind the following
factors when using interrupts:

o Interrupts are only checked by MMBasic at the completion of each command, and they are not latched
by the hardware. This means that an interrupt that lasts for a short time can be missed, especially when
the program is executing commands that take some time to execute. Most commands will execute in
under 15us however some commands such as the TEMPR() function can take up to 200ms so it is
possible for an interrupt to occur and vanish within this window and thus not be recognised.

o When inside an interrupt all other interrupts are blocked so your interrupts should be short and exit as
soon as possible. For example, never use PAUSE inside an interrupt. If you have some lengthy
processing to do you should simply set a flag and immediately exit the interrupt, then your main program
loop can detect the flag and do whatever is required.

e The subroutine that the interrupt calls (and any other subroutines called by it) should always be exclusive
to the interrupt. If you must call a subroutine that is also used by an interrupt you must disable the
interrupt first (you can reinstate it after you have finished with the subroutine).

o Remember to disable an interrupt when you have finished needing it — background interrupts can cause
strange and non-intuitive bugs.

In addition to interrupts generated by the change in state of an 1/O pin, an interrupt can also be generated by
other sections of MMBasic including timers and communications ports and the above notes also apply to them.

Page 50 Colour Maximite 2 User Manual Page 50

Special Device Support

To make it easier for a program to interact with the external world the Colour Maximite 2 includes drivers for a
number of common peripheral devices.

Infrared Remote Control Decoder

You can easily add a remote control to the Colour Maximite 2. The solder pads for the IR receiver are on the
motherboard (near the Wii connector) and it is only a matter of soldering in a suitable receiver. With this done
you can use the IR command to handle the device and key codes within your program.

It will work with any NEC or Sony compatible remote controls including ones that generate extended
messages. Most cheap programmable remote controls will generate either protocol and using one of these you
can add a sophisticated flair to your programs. The NEC protocol is also used by many other manufacturers
including Apple, Pioneer, Sanyo, Akai and Toshiba so their branded remotes can be used.
NEC remotes use a 38kHz modulation of the IR signal and suitable receivers tuned to this frequency include
the Vishay TSOP4838, Jaycar ZD1952 and Altronics Z1611A .
Sony remotes use a 40 kHz modulation and receivers for this frequency can be hard to find. Generally 38 kHz
receivers will work but maximum sensitivity will be achieved with a 40 kHz receiver.
To setup the decoder you use the command:

IR dev, key, interrupt

Where dev is a variable that will be updated with the device code and key is the variable to be updated with the
key code. Interrupt is the interrupt subroutine to call when a new key press has been detected. The IR
decoding is done in the background and the program will continue after this command without interruption.

This is an example of using the IR decoder:

IR DevCode, KeyCode, IR Int " start the IR decoder

DO
" < body of the program >

LOOP

SUB IR_Int " a key press has been detected
PRINT "Received device = " DevCode " key = " KeyCode

END SUB

IR remote controls can address many different devices (VCR, TV, etc) so the program would normally examine
the device code first to determine if the signal was intended for the program and, if it was, then take action
based on the key pressed. There are many different devices and key codes so the best method of determining
what codes your remote generates is to use the above program to discover the codes.

Infrared Remote Control Transmitter

Using the IR SEND command you can transmit a 12 bit Sony infrared
remote control signal. This is intended for communications with

another Colour Maximite 2 or a Micromite but it will also work with 58 ohms
Sony equipment that uses 12 bit codes. Note that all Sony products
require that the message be sent three times with a 26mS delay x
between each message.

The circuit on the right illustrates what is required. The transistor is
used to drive the infrared LED because the output of the 1/O pin is NN BC338
limited to about 10mA. This circuit provides about 50mA to the LED. 1K

To send a signal you use the command: J_

IR SEND pin, dev, cmd = =
Where pin is the I/O pin used, dev is the device code to send and key is the key code. Any 1/O pin can be used
and you do not have to set it up beforehand (the IR SEND command will automatically do that).

Note that the modulation frequency used is 38KHz and this matches the common IR receivers (described
above) for maximum sensitivity when communicating to another Maximite or a Micromite.

3.3v +5V

IR

Maximite LED

Page 51 Colour Maximite 2 User Manual Page 51

Measuring Temperature
The TEMPR() function will get the temperature from a DS18B20

temperature sensor. This device can be purchased on eBay for about $5 in a Vo
variety of packages including a waterproof probe version. sv €1
There is a position on the Colour Maximite 2's mother board for a TO-92 47K
version of this sensor and this can be mounted so that the body of the sensor Any

pokes out of a hole in the back panel to sense the ambient temperature. |If Maximite (s
this is installed the associated pullup resistor (4.7K€) on the motherboard /O Pin

must also be installed and pin 42 used in the function and command

described below.. —

Sensors can also be connected to any of the pins on the eternal 1/O connector.
The DS18B20 should be powered separately by a 3V to 5V supply as shown on the right. Multiple sensors can
be used but a separate I/O pin and a 4.7K pullup resistor is required for each one.

To get the current temperature you just use the TEMPR() function in an expression. For example:
PRINT "Temperature: " TEMPR(pin)

Where 'pin' is the I/O pin to which the sensor is connected. You do not have to configure the 1/O pin, that is
handled by MMBasic.

The returned value is in degrees C with a resolution of 0.25°C and is accurate to 0.5 °C. If there is an error
during the measurement the returned value will be 1000.

The time required for the overall measurement is 200ms and the running program will halt for this period while
the measurement is being made. This also means that interrupts will be disabled for this period. If you do not
want this you can separately trigger the conversion using the TEMPR START command then later use the
TEMPR() function to retrieve the temperature reading. The TEMPR() function will always wait if the sensor is
still making the measurement.

For example:
TEMPR START 15

< do other tasks >
PRINT "Temperature: " TEMPR(15)

Measuring Humidity and Temperature

The HUMID command will read the humidity and temperature from a DHT22 humidity/temperature sensor.
This device is also sold as the RHT03 or AM2302 but all are compatible and can be purchased on eBay for
under $5. The DHT11 sensor is also supported. 3V to
The DHT22 can be powered from 3.3V or 5V (5V is 5V
recommended) and it should have a pullup resistor on the

data line as shown. This is suitable for long cable runs (up

to 20 meters).

i v <
<«

Any
To get the temperature or humidity you use the HUMID Maximite
command with three or four arguments as follows: /O Pin

DHD22 pin, tvVar, hvVar [,DHT11]

Where 'pin' is the I/O pin to which the sensor is connected.
You can use any I/O pin but if the DHT22 is powered from 5V it must be 5V capable (ie, NOT a pin that
supports analog input). The 1/O pin will be automatically configured by MMBasic.

'tVar' is a floating point variable in which the temperature is returned and 'hVar' is a second variable for the
humidity. Both of these variables must be declared first as floats (using DIM). The temperature is returned as
degrees C with a resolution of one decimal place (eg, 23.4) and the humidity is returned as a percentage
relative humidity (eg, 54.3).

If the optional DHT11 parameter is set to 1 then the command will use device timings suitable for that device.
In this case the results will be returned with a resolution of 1 degree and 1% humidity

For example:

DIM FLOAT temp, humidity
HUMID pin, temp, humidity
PRINT "The temperature is'" temp " and the humidity is" humidity

Page 52 Colour Maximite 2 User Manual Page 52

Measuring Distance

Using a HC-SR04 ultrasonic sensor (illustrated below) and the built in DISTANCE() function you can measure
the distance to a target.

This device can be found on eBay for about $4 and it will measure the distance
to a target from 3cm to 3m. It works by sending an ultrasonic sound pulse and
measuring the time it takes for the echo to be returned.

Compatible sensors are the SRF05, SRF06, Parallax PING and the DYP-
MEOQOQ7 (which is waterproof and therefore good for monitoring the level of a
water tank).

You use the DISTANCE function as follows:
d = DISTANCE(trig, echo)

Where trig is the 1/0 pin connected to the "trig" input of the sensor and echo is the pin connected the "echo"
output of the sensor. You can also use 3-pin devices and in that case only one pin number is specified.

The value returned is the distance in centimetres to the target. The 1/O pins are automatically configured by
this function but note that they should be 5V capable as the HC SR04 is a 5V device.

WS2812 Support

The Colour Maximite 2 has built in support for the WS2812 multicolour LED chip. This chip needs a very
specific timing to work properly and with the BITBANG WS8212 command it is easy to control these devices
with minimal effort.

This command will output the required signals needed to drive a chain of WS2812 LED chips connected to the
pin specified and set the colours of each LED in the chain. The syntax of the command is:

BITBANG WS2812 type, pin, colours®()
Note that the pin must be set to a digital output before this command is used.

The colours%() array should be sized to have exactly the same number of elements as the number of LEDs to
be driven. Each element in the array should contain the colour in the normal RGB888 format (0 - &HFFFFFF).
There is no limit to the size of the WS2812 string supported.

'type' is a single character specifying the type of chip being driven as follows:
O = original WS2812
B = WS2812B
S = SK6812

As an example:

DIM b%(4)=(RGB(red), Rgb(green), RGB(blue), RGB(Yellow), Rgb(cyan))
SETPIN 5, DOUT

BITBANG WS2812 0O, 5, b%()

will output the specified colours to an array of five WS2812 LEDs daisy chained off pin 5.

Page 53 Colour Maximite 2 User Manual Page 53

Hobbytronic Mouse Support

The Colour Maximite 2 has built in support for the Hobbytronic USB mouse interface.
https://www.hobbytronics.co.uk/usb-host-mouse

This is enabled using the CONTROLLER MOUSE OPEN command and then the mouse position and buttons
can be interrogated using the MOUSE function.

CAN Support

The CMM2 MMBasic exposes the native support for CAN provided by the = W)awgeei CANL
STM32H743 chip as the MMBasic CAN command.A CAN transceiver e
such as the SN65HVD230 CAN Transceiver is required to interface the
actual physical CAN bus. It connects to 3.3V and GND plus the nominated
CAN Tx and CAN Rx pins on the ARMmite. The CANL and CANH
connectors go to the physical CAN bus. You can exercise the CAN
command in loopback mode without having the transceiver attached.

See Appendix | — CAN Support for details.

Page 54 Colour Maximite 2 User Manual Page 54

https://www.hobbytronics.co.uk/usb-host-mouse

Game Playing Features

The Colour Maximite 2 has many features designed to help programmers in writing computer games. One of
the most important features of this computer is its speed (approx 10 times faster than the original Colour
Maximite) and its large program memory. These alone make it possible to write large and complex programs
without the issues of optimising the program for speed or space.

Other useful features include managing the video output and drawing moveable images, a selection of text
drawing methods and fonts, displaying images, playing audio and getting input from a keyboard or games
controller.

VGA Resolution, Colour Depth and Pages

The video output to the VGA monitor is controlled by the MODE command. With this you can select various
resolutions from 1280x720, 800x600 pixels (the normal default on startup) to 240x216 and various colour
depths from 16-bits to 8-bits. For the 8-bit colour mode each individual colour can be specified from a 16-bit
pallet using the MAP command.

Particularly useful is the 12-bit colour mode which supports 4096 colours with an additional 4-bit alpha channel
allowing 16 levels of transparency. This mode has provision for two image layers plus a background colour.
Images on the top layer will cover the lower layer except where the alpha channel is set to allow transparency
thereby allowing various degrees of the lower layer and/or background to show through.

In addition there are many extra video pages that are available to the programmer for building images. These
pages can then be copied at high speed during the video blanking period to the main display page providing an
instantaneous display update without any tearing artefacts. This is managed by the PAGE WRITE command
which specifies the video page to be used for the output of subsequent graphics commands and the PAGE
COPY command which will copy one page to another.

When drawing to the main page being displayed on the monitor the programmer can use the GETSCANLINE
function to report on the line that is currently being drawn on the VGA monitor. Using this to time updates to
the screen can avoid screen glitches caused by updates while the screen is being updated. A similar outcome
can be achieved using an optional feature of the MODE command which will call a user defined subroutine at
the start of the VGA frame blanking.

This and other features of the graphics subsystem are explained in detail in a tutorial presented on the Back
Shed forum: https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12125 . A PDF version is
included in the Colour Maximite 2 firmware zip file.

Scrolling and Sprites

The PAGE SCROLL command will scroll a page horizontally or vertically by a specified number of pixels
allowing the games programmer to create a smoothly scrolling background for platform games and the like.

The Colour Maximite 2 has extensive support for sprites which is an image that can be moved over the
background without disturbing the background. This feature is far more sophisticated than that available on the
original Colour Maximite. The sprite can be a PNG image or an image defined in a text file and can be of any
size up to the video horizontal and vertical resolution. The transparency colour can be either black or defined
in the image depending on the colour depth specified by the MODE command.

Multiple sprites can be loaded and they can be moved around the screen, hidden or displayed as a group or
individually. MMBasic also includes a versatile mechanism for detecting when two sprites collide allowing
(for example) the programmer to create a realistic bounce effect.

Displaying Images
The Colour Maximite 2 can load and display images stored on the SD card in a variety of formats including
BMP, GIF, PNG and JPG. These are read from the SD card by the LOAD command and can be of any size and

positioned anywhere on the screen. In addition on-screen images can be scaled and rotated under control of the
program.

Fonts

Built in to MMBasic is support for seven fonts ranging from small to large. In addition user supported fonts
can be defined by the BASIC program or dynamically loaded from the SD card. All fonts can be displayed in
various colours, scaled and rotated.

Page 55 Colour Maximite 2 User Manual Page 55

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12125

Playing Audio

The Colour Maximite 2 can play audio on the stereo audio output in a variety of formats using the PLAY
command. These include sound effects or music encoded as WAV, FLAC or MP3 files. Also supported is the
playing of MOD files which is a standard for computer generated music. The PLAY EFFECT command will
allow the simultaneously playing of an WAV file over a MOD file so that sound effects can be superimposed
on the computer generated music playing in the background.

Other audio formats available to the programmer include pure sine wave tones or sound effects consisting of a
mixture of sine wave, square wave, triangle wave, sawtooth wave or random noise (The PLAY TONE and
PLAY SOUND commands). The programmer can also change the volume, pause any audio output, resume the
playing or step forward or back to the next audio file.

To round off the list of audio features the TTS command will generate a robotic speech output based on a string
which defines the words and sounds to be generated.

Keyboard Keys
In games that use the keyboard for input the user will often hold down a number of keys simultaneously. This

condition can be detected using the KEYDOWN() function. This will return the number of keys held down and
their values in the order that they were depressed. MMBasic will track up to six simultaneous key depressions.

Wii Nunchuk and Classic Controllers

The Wii Nunchuk (also spelt Nunchuck) and the Wii Classic are inexpensive games controller which include a
joystick and various buttons. MMBasic on the Colour Maximite 2 provides full support for up to three of these
controllers including querying the state of all user inputs and their calibration constants.

The Nunchuk controller is opened with the CONTROLLER NUNCHUK OPEN command and its status is
queried using the NUNCHUK() function. The Classic controller is opened with the CONTROLLER CLASSIC
OPEN command and its status is queried using the CLASSIC() function.

Page 56 Colour Maximite 2 User Manual Page 56

Porting Programs

This chapter covers some of the considerations involved in porting programs from the original Colour
Maximite to the Colour Maximite 2. There is a high degree of backwards compatibility in the Colour Maximite
2 and most programs will run with little effort, however, as can be expected, there are some differences that
need to be addressed.

Most of these differences involve the more specialised functions such as graphics, input/output and some
functions like the random number generator. Note that not all differences are listed here, just the more
important ones that are likely to cause problems when porting programs.

Variables

In the original Colour Maximite it was possible to define variables with the same name but using a different
type. For example, it was possible to use the following: v=3.4512 and v$="abcdefg” in the same
program (ie, the variable was defined as both a float and a string).

This is not allowed in the Colour Maximite 2, variables must be unique regardless of their type.

Floating Point
In the Colour Maximite 2 floating point is double precision. This means that if a number is printed without

formatting it will contain more significant digits than the same number on the original Colour Maximite.
Generally, this will not cause an issue but it might mess up numbers that need to be printed in neat columns.

Graphic Commands
The syntax of the graphic commands PIXEL, LINE, BOX and CIRCLE have completely changed. However,
using the command OPTION LEGACY ON you can change these commands back to the same syntax as used
in the original Colour Maximite. This option is not saved so it needs to be placed in the program before any
graphic commands are used.
This option will also cause the drawing commands to accept colours in the range of 0 to 7. However, the
colour shortcuts (red, blue, etc) are not defined as they were on the original Colour Maximite so, if these are
required, they will need to be defined in the program as follows:

CONST Black = 0

CONST Blue =1

CONST Green = 2

CONST Cyan = 3

CONST Red = 4

CONST Purple =5

CONST Yellow 6

CONST White = 7

You can also use OPTION LEGACY OFF to switch back to the Colour Maximite 2 syntax, so it is possible to
mix both forms of the graphics commands in the one program.

The VGA display mode is not changed with this option so it should be specifically set to MODE 4, 8 for
emulating the 480x432 resolution of the original Colour Maximite or MODE 5, 8 for emulating its 240x216
resolution.

The syntax of the MODE command has changed.
The Scan Line Colour Override function is not supported in the Colour Maximite 2.

Fonts
The FONT command has a completely different purpose and syntax in the Colour Maximite 2.

The Colour Maximite 2 has the ability to load fonts using the LOAD FONT command and you can convert the
original Colour Maximite’s font files to this format using the program FontTweak from: https://www.c-
com.com.au/MMedit.htm

BLIT

The BLIT command is compatible with the exception that it does not implement the optional parameter
specifying which colour planes to copy.

Page 57 Colour Maximite 2 User Manual Page 57

https://www.c-com.com.au/MMedit.htm
https://www.c-com.com.au/MMedit.htm

Sprites
As with the original Colour Maximite sprites can be loaded from a Maximite sprite file using the command:
SPRITE LOAD filename$ [,start_sprite_number]

This is compatible with the original Colour Maximite however the Colour Maximite 2 has a few improvements:

e An optional third parameter is available in the first line of the sprite file in which case the first
parameter becomes the width and the third parameter the height. Both width and height can be set to
any size.

o If only two parameters are specified the first parameter sets both the width and height and can be a
number other than 16.

e Multiple sprite files can be loaded by specifying the optional ‘start_sprite_number’ to ensure that the
sprites from different files do not overlap. This parameter defaults to 1 if not specified.

The following example shows a red mouse pointer. The first line of the file holds the parameters for the sprite
(ie, the width, the number of sprites in the file, and the height in that order).

13,1,19

4

44
4 4

N
N

444444
4 4
44 4
4 4
4

4

ArADMAMDMDAMDMDIMDIMDIMIADMS
IN

A

4 4
4444

The above sprite can be saved as "mouse.spr”. Then the following commands will load and show it:
SPRITE LOAD "mouse.spr', 5
SPRITE SHOW 5, 100, 100, 1

Note that a space character is interpreted as BLACK in 8 and 16-bit colour modes and transparent BLACK in
12-bit colour. A “0” is interpreted as NOTBLACK in 8 and 16-bit colour modes and solid BLACK in 12-bit
colour.

SOUND and TONE

The SOUND command has a different purpose and syntax in the Colour Maximite 2 and should be replaced
with the PWM command. The TONE command has been replaced by PLAY TONE.

SD Card and File Related Commands
There is no drive B: in the Colour Maximite 2. The SD card is drive A:.

The command CHAIN is not implemented. The Colour Maximite 2 has an exceptionally large program
memory space so this feature is not necessary. The library and the LIBRARY commands are not implemented
and not needed on the Colour Maximite 2. Instead of using these commands you can use #INCLUDE to insert
files into the program at run time.

The commands PLAYMOD, LOADBMP and SAVEBMP have changed names. See PLAY MODFILE,
LOAD BMP and SAVE IMAGE.

The DRIVE command and the predefined read-only variable MM.DRIVES$ are not supported.

Special Devices

LCD displays, Real Time Clocks (RTC) and keypads are not supported in the Colour Maximite 2. These can
all be implemented in BASIC.

Page 58 Colour Maximite 2 User Manual Page 58

CONFIG Commands
Relevant CONFIG commands in the original Colour Maximite have been converted to OPTION commands.

Error Handling
Error handling using the OPTION ERROR commands has changed (see ON ERROR).

Random Number Generator
The Colour Maximite 2 has an advanced random number generator based on an analog circuit that generates a
sequence of true random numbers which will never repeat. For this reason the CMM2 does not require (or
allow) the programmer to seed the random generator to get different sequences.
The original Colour Maximite generated a pseudo random number sequence that always repeated with the same
seed and in some rare cases this is what the programmer requires. If you need this behaviour you can use the
following to generate a repeatable set of random numbers:
function pseudo() as float
static seed%=7
static a%=1103515245, c%=12345, m%=2"31
seed%=(a% * seed% + c%) mod m%
pseudo = seed%/m%
end function

Change the assignment to seed% to change the seeding number.

Page 59 Colour Maximite 2 User Manual Page 59

Long Strings

Long Strings are a set of commands and functions that allow MMBasic to manipulate strings of unlimited
length and are particularly useful when dealing with data sent via WiFi and the Internet. Standard strings in
MMBasic are limited to a maximum length of 255 characters. Long strings duplicate these functions but will
work with strings of any length limited only by the amount of available RAM.

Long String Variables

Variables for holding long strings must be defined as integer arrays. The long string routines do not keep
numbers in these arrays but just use them as blocks of memory for holding long strings.
When creating these arrays they should be defined as single dimensioned integer arrays with the number of
elements set to the number of characters required for the maximum string length divided by eight. The reason
for dividing by eight is that each integer in an MMBasic array occupies eight bytes.
The following is an example of declaring three long string variables which will be used to hold up to 2048
characters in each:

CONST MaxLen = 2048

DIM INTEGER Strl(MaxLen/8), Str2(MaxLen/8), Str3(MaxLen/8)
These will contain empty strings when created (ie, their length will be zero). When these variables are passed
to the long string functions they should be entered as the variable name followed by empty brackets. For
example:

LONGSTRING COPY Stri1(), Str2()

Long string variables can be passed as arguments to user defined subroutines and functions. For example:

Sub MySub longarg() AS INTEGER
PRINT "Long string length is" LLEN(longarg())
END SUB

And it could be called like this:
MySub str1()

Long String Commands
These are documented in detail in the Commands and Functions sections of this manual. The commands are:
LONGSTRING AES128 ENCRYPT/DECRYPT Encrypts or decrypts a long string

LONGSTRING APPEND array%(), string$ Append an ordinary string to a long string
LONGSTRING BASE64 ENCODE/DECODE Encodes or decodes a long string using base 64
LONGSTRING CLEAR array%!() Clear (ie, set to empty) a long string
LONGSTRING COPY dest%(), src%() Copy a long string

LONGSTRING CONCAT dest%(), src%o() Concatenate two long strings

LONGSTRING LCASE array%() Convert a long string to lowercase
LONGSTRING LEFT dest%(), src%(), nbr Get the left nbr characters from a long string
LONGSTRING LOAD array%(), nbr, string$ Copy characters to a long string
LONGSTRING MID dest%(), src%(), start, nbr Get characters from the middle of a long string
LONGSTRING PRINT [#n,] src%() [;] Print a long string

LONGSTRING REPLACE array%() , string$, start Replace characters in a long string
LONGSTRING RESIZE addr%(), nbr Set the length of a long string

LONGSTRING RIGHT dest%(), src%(), nbr Get the right nbr characters from a long string
LONGSTRING SETBYTE addr%(), nbr, data Set a byte in a long string

LONGSTRING TRIM array%(), nbr Trim characters from the left of a long string
LONGSTRING UCASE array%!() Convert a long string to uppercase
LMID(array%(),start [,num])=string$ Insert/replace text in a longstring

Page 60 Colour Maximite 2 User Manual Page 60

Long String Functions

r = LGETBYTE(array%(), n) Return the value of a byte in a long string

r$ = LGETSTR$(array%(), start, length) Returns part of a long string as a normal string.

r = LINSTR(array%(), search$ [,start] [,size]) Returns the position of a string in a long string

r = LLEN(array%()) Returns the length of a long string

r= LINPUT (array%(),fnbr,nbr) Reads nbr bytes from a file returning the number read
MATH(BASE64 ENCODE/DECODE) Encodes or decodes data using base 64

Page 61 Colour Maximite 2 User Manual Page 61

MMBasic Characteristics

Implementation Characteristics

e Maximum program size (as plain text) is 512KB. Note that MMBasic tokenises the program when it is
stored in program memory so the final size in program memory might vary from the plain text size

e Maximum length of a command line is 255 characters

e Maximum length of a variable name or a label is 31 characters

e Maximum number of variables 1024: 512 global and 512 local

e Maximum number of dimensions to an array is 5

¢ Maximum number of arguments to commands that accept a variable number of arguments is 32
e Maximum number of nested FOR...NEXT loops is 100

e Maximum number of nested DO...LOOP commands is 100

e Maximum number of nested GOSUBS, subroutines and functions (combined) is 50

e Maximum number of nested multiline IF...ELSE...ENDIF commands is 20

e Maximum number of SELECT CASE statements is unlimited

e Maximum number of user defined subroutines and functions (combined): 500

e Maximum number of interrupt pins that can be configured: 10

e The range of floating point numbers is 1.797693134862316e+308 to 2.225073858507201e-308
e The range of 64-bit integers (whole numbers) that can be manipulated is + 9223372036854775807
e Maximum string length is 255 characters

e Maximum line number is 65000

¢ Maximum number of background pulses launched by the PULSE command is 5

e Maximum number of sprites is 64 (#1 to #64)

e Maximum number of sprite collisions is 8

e Maximum length of a line in a program is 240 characters

Compatibility

MMBasic implements a large subset of Microsoft’s GW-BASIC. There are numerous differences due to
physical and practical considerations but most standard BASIC commands and functions are essentially the
same. An online manual for GW-BASIC is available at http://www.antonis.de/gbebooks/gwbasman/index.html
and this provides a more detailed description of the commands and functions.

MMBasic also implements a number of modern programming structures documented in the ANSI Standard for
Full BASIC (X3.113-1987) or ISO/IEC 10279:1991. These include SUB/END SUB, the DO WHILE ...
LOOP, the SELECT...CASE statements and structured IF .. THEN ... ELSE ... ENDIF statements.

The SELECT CASE commands allow the programmer to create a clear and structured decision tree that is more
flexible and easier to understand when multiple decisions must be made. The DO WHILE ... LOOP command
make it easy to build loops without using the GOTO statement. User defined subroutines and functions make it
easy to add your own commands to MMBasic.

The IF... THEN command can span many lines with ELSEIF ... THEN, ELSE and ENDIF statements as
required and also spaced over many lines.

Page 62 Colour Maximite 2 User Manual Page 62

http://www.antonis.de/qbebooks/gwbasman/index.html

MMBasic Firmware Memory Map for the CMM2 Implementation
Below is a summary of how the MMBasic firmware makes use of the available resources on the STM32H743

chip. This detail is not really need to use MMBasic but may be of interest if you want to dig deeper. The
summary is derived from the STM32H743 Reference Manual (RM04033) and the MMBasic source code.

All the Ram, SDRam, Flash and peripherals of the STM32H743 are mapped to a 32 bit address space. The table
below lists some of the relevant items.

‘ Address Range (hex) Type ‘ Size Usage/Detail
D080 0000 — D1FF FFFF | SDRAM 24M MMBasic Heap in SDRAM MM.INFO(HEAPS)
(G2 32M) Variable data > 256 bytes
FrameBuffer
GetMemory
GetTempMemory > 8192 bytes
D078 0000 — DO7F FFFF | SDRAM 0.5M | Program Memory (If OPTION RAM)
(G2 32M)
D000 0000 - D077 FFFF | SDRAM 7.5M | RAM CMM2 G2
(G2 32M) Display Page Memory (See MODE command)
D038 0000 - DO7F FFFF | SDRAM 45M | MMBasic Heap in SDRAM MM.INFO(HEAPS)
(G18M) Variable data > 256 bytes
FrameBuffer s
GetMemory
GetTempMemory > 8192 bytes
D030 0000 - D037 FFFF | SDRAM 0.5 Program Memory (If OPTION RAM)
(G1 8Mm)
D000 0000 - DO2F FFFF | SDRAM 3M RAM CMM2 G1
(G18M) Display Page Memory (See MODE command)
4000 0000 -5FFF FFFF Registers This address range allows access to the registers that
Peripherals control the various functions. Eg. GP10, ADC,
Timers, SPI, DAC, USART, 12C. MMBasic takes
care of all this, however it is possible to PEEK and
POKE these registers.
3880 0000 — 3880 OFFF | Battery 4K Saved Variables. MMBasic VAR SAVE,
Backed VAR RESORE and VAR CLEAR use this area.
Ram This Ram is battery backed up if a battery is
connected to VBAT.
3800 0000 - 3800 FFFF | Ram 64K MMBasic hashed VARTBL
The MMBasic variable table is located in this RAM.
It is possible to use PEEK and POKE to manipulate
the variable table. Size 512 * size of structure.
String Variables < 16 chars
Non array Integer and Floats
3004 0000 — 3004 7FFF | Ram 32K MMBasic SUB/FUN hash table 512 * (32+4) 18K
3000 0000 - 3003 FFFF | Ram 256K | MMBasic HEAP in RAM MM.INFO(HEAPI)

Page 63

Colour Maximite 2 User Manual

Page 63

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjtobvviJH7AhWQ6jgGHS9SBNEQFnoECBwQAQ&url=https%3A%2F%2Fwww.st.com%2Fresource%2Fen%2Freference_manual%2Fdm00314099-stm32h742-stm32h743-753-and-stm32h750-value-line-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf&usg=AOvVaw21Ho71jW1W-h2hWT8wRJ3Q

RAMBase - RAMENd Integer and Float arrays DIMed < 32 and Non array
Strings from Top down.
GetTemporyMemory < 8192 bytes from Bottom Up.
GetlnternalMemory Top Down
GetStringMemoryBottom Bottom Up

2400 0000 - 2407 FFFF | Ram 512K | Display Page 0 memory. See MODE command

2000 0000 - 2001 FFFF | Ram 128K | Fast DTCM RAM used by MMBasic Firmware for
its own variables, C stack.

081E 0000 — 081F FFFF | Flash 128K | Saved Options, Permanent options are stored here.
See Option Settings

081C 0000 — 081D FFFF | Flash 128K | Used to store the MMBasic program. Page 6

081A 0000 - 081B FFFF | Flash 128K | Used to store the MMBasic program. Page 5

0818 0000 — 0819 FFFF | Flash 128K | Used to store the MMBasic program. Page 4

0816 0000 - 0817 FFFF | Flash 128K | Used to store the MMBasic program. Page 3.

0814 0000 - 0815 FFFF | Flash 128K | Used to store the MMBasic program. Page 2

0812 0000 - 0813 FFFF | Flash 128K | Used to store the MMBasic program. Page 1

08100000 - 0811 FFFF Flash 128K | Used to store the MMBasic program. Page 0
Usage reported by the MMBasic Memory Command

0800 0000 — 080F FFFF | Flash 1024K | 1024 K of the total 2M flash is used to store the
MMBasic Firmware and its constant data.

0000 0000 - 0000 FFFF | ITCRAM | 64K

Ram

Page 64

Colour Maximite 2 User Manual

Page 64

Predefined Read Only Variables

These variables are set by MMBasic and cannot be changed by the running program.

IVIIVI.UCIVIDLINED

A string representing the arguments on the command line when the

MM.CMDLINE$

program was run.
IVIIV.UEVILED . . - .. -
MM.DEVICES$ A string representing the device or platform that MMBasic is running on.

Currently this variable will contain one of the following:
"Maximite" on the standard Maximite and compatibles.
"Colour Maximite™ on the Colour Maximite and UBW32.
"Colour Maximite 2" on the Colour Maximite 2.
"DuinoMite" when running on one of the DuinoMite family.
"DOS" when running on Windows in a DOS box.

"Generic PIC32" for the generic version of MMBasic on a PIC32.
"Micromite" on the PIC32MX150/250

"Micromite MKII" on the PIC32MX170/270

"Micromite Plus" on the PIC32M X470

"Micromite Extreme™ on the PIC32MZ series

IVIIVI.ESUL

MM.ESC Returns 1 if OPTION ESCAPE is enabled, else 0.

IVIIVIERRKINU/ IVIIVIERKIVISG D R R R .

MM.ERRNO If a statement caused an error which was ignored these variables will be set

MM.ERRMSGS$ accordingly. MM.ERRNO is a number where non zero means that there was

' an error and MM.ERRMSGS$ is a string representing the error message that

would have normally been displayed on the console. They are reset to zero
and an empty string by RUN, ON ERROR IGNORE or ON ERROR SKIP.

IVIIVL.LFLALS)

MM.FLAGS Returns the value of system flag register. See also FLAGS command.

IVIIVI.LFUN T HEIGH I/WID TR

MM.FONTHEIGHT
MM.FONTWIDTH

Integers representing the height and width of the current font (in pixels).

IVIIVI.LHEIGH I /IVIIVI.WID | H

MM.HEIGHT Returns the number of characters across the physical display with the current
MM.WIDTH Mode or the number of characters down the display with the current Mode.
IVIIVI.FHFUY/ IVIIVL.VFUS . . - . . .
MM.HPOS The current horizontal and vertical position (in pixels) following the last
MM.VPOS graphics or print command.
IVIIVI.HRES/ IVIIVIL.VRED i . . A
MM.HRES Integers representing the horizontal and vertical resolution of the VGA
MM VRES display in pixels.
IVIVILIZL . i L. . .
MM.I12C Following an I°C write or read command this integer variable will be set to
indicate the result of the operation as follows:
0 = The command completed without error.
1 = Received a NACK response
2 = Command timed out
IVIV.LUNEWIKE . i . L . . L
MM.ONEWIRE Following a 1-Wire reset function this integer variable will be set to indicate
the result of the operation as follows:
0 = Device not found.
1 = Device found
Page 65 Colour Maximite 2 User Manual Page 65

IVIIVL.LFUS

MM.POS For the console, returns the current cursor position in the line in characters.

IVIIVI.VER . . . A A

MM.VER The version number of the firmware as a floating point number in the form
aa.bbcc where aa is the major version number, bb is the minor version
number and cc is the revision number. For example version 5.03.00 will
return 5.03 and version 5.03.01 will return 5.0301.

IVIIVI.WWA I CHDUL

MM.WATCHDOG An integer which is true (ie, 1) if MMBasic was restarted as the result of a
Watchdog timeout (see the WATCHDOG command). False (ie, 0) if
MMBasic started up normally.

MM:INFSS These two versions can be used interchangeably but good programmin

MM.INFO() . _ geably but good prog g

MM.INFO$() practice would require that you use the one corresponding to the returned

MM.INFO(BCOLOUR)
MM.INFO$(CPUSPEED)

MM.INFO$(CURRENT)

MM.INFO$(DIRECTORY)

MM.INFO(DISK SIZE)

MM.INFO(EXISTS FILE
filename$

MM.INFO(EXISTS DIR
dirname$)

MM.INFO(FCOLOUR)

MM.INFO(FILESIZE file$)

MM.INFO(FONT ADDRESS
n)

MM.INFO(FONT POINTER n)

MM.INFO(FONTHEIGHT)
MM.INFO(FONTWIDTH)

MM.INFO(FRAMEBUFFER)

MM.INFO(FRAMEH)

MM.INFO(FRAMEV)

MM.INFO(FREE SPACE)

Page 66

datatype.
Returns the current background colour

Returns the CPU speed as a string. This will be 400000000 for the Y
version of the STM32H74311 or 480000000 for the V version.

Returns the name of the current program or NONE if called after a NEW
command

Returns the current working directory. This will always end with a */°
character.

Returns the capacity of the SD card in bytes

Returns 1 if the file filename$ exists otherwise returns 0.

Returns 1 if the directory dirname$ exists otherwise returns 0.

Returns the current foreground colour

Returns the size of “file$’ in bytes. Returns -1 if the file is not found.
Returns -2 if file$ is the name of a valid directory

Returns the address of the memory location containing the address of FONT
n

Returns a POINTER to the start of FONT n in memory

Integers representing the height and width of the current font (in pixels).

Returns the physical memory location of the framebuffer. This is useful if
you need to POKE/PEEK the contents of the page.

Returns the horizontal size of the frame buffer in pixels.
Returns the vertical size of the framebuffer in pixels

Returns the number of free bytes on the SD card

Colour Maximite 2 User Manual Page 66

MM.INFO(HPOS)
MM.INFO(VPOS)

MM.INFO$(ID)
MM.INFO$(1D48)

MM.INFO$(KEYBOARD)

MM.INFO(MAX PAGES)

MM.INFO(MODE)

MM.INFO$(MODIFIED file$)

MM.INFO(OPTION option)

MM.INFO(PAGE ADDRESS n)

MM.INFO(PATH)

MM.INFO$(PIN pinno)

MM.INFO(PROGRAM)
MM.INFO$(RESET)

MM.INFO$(SDCARD)

MM.INFO$(SEARCH PATH)

MM.INFO$(SOUND)

MM.INFO$(TRACK)

MM.INFO(VERSION)

MM.INFO(WRITE PAGE)

MM.INFO(UPTIME)

Page 67

The current horizontal and vertical position (in pixels) following the last
graphics or print command.

Returns the unique hex 12 byte ID of the CMM2 chip as a string.
Returns a 48bit hash of the ID as an integer. Not guaranteed unique world

wide but most likely unique. Suitable as a serial no for the device and fits
inside a CAN message.

Returns the string CONNECTED if a USB keyboard is connected and
working. Otherwise returns “NOT CONNECTED”

Returns the maximum page number that can be selected in the current
graphics mode.

Returns the video mode as a floating point number e.g. 1.8, 2.16, etc.

Returns the date/time that “file$’ was last modified. File$ can be a normal
file or the name of a directory. Returns an empty string if the file or
directory is not found.

Returns the current value of a range of options that affect how a program
will run. “option” can be one of ANGLE, AUTORUN, BASE, BREAK,
CONSOLE, CONSOLE PORT, DEFAULT, EXPLICIT, LEGACY,
MOUSE, PROFILING, USBKEYBOARD, Y_AXIS

Returns the physical memory location of page ‘n’. This is useful if you need
to POKE/PEEK the contents of the page.

Returns the path of the current program or NONE if called after a NEW
command

Returns the status of 1/O pin 'pinno’. Valid returns are:
INVALID, RESERVED, IN USE, and UNUSED

Returns the address in memory of the start of the program

Returns the cause of a firmware restart. The returned value will be one of
“Switch” (i.e. pressing the reset switch), “Power-On”, “Software”, and
“Watchdog” (NB the latter is the H/W watchdog and unrelated to the
MMbasic version which causes a software reset)

Returns the status of the SD card. Valid returns are:
DISABLED, NOT PRESENT, READY, and UNUSED

Returns the string set as the search path by OPTION SEARCH PATH

Returns the status of the sound output device. Valid returns are: OFF,
PAUSED, TONE, WAV, MP3, MODFILE, TTS, FLAC, DAC, SOUND

The name of the current audio track playing. This returns "OFF" if nothing
is playing.

The version number of the firmware as a floating point number in the form
aa.bbcc where aa is the major version number, bb is the minor version
number and cc is the revision number. For example version 5.03.00 will
return 5.03 and version 5.03.01 will return 5.0301.

Returns the address in memory of the page to which writes will take place

Returns the time since rebooting the CMM2 in seconds

Colour Maximite 2 User Manual Page 67

Page 68 Colour Maximite 2 User Manual Page 68

Operators

The following operators are listed in order of precedence. Operators that are on the same level (for example +
and -) are processed with a left to right precedence as they occur on the program line.

Numeric Operators (Float or Integer)

NOT INV NOT will invert the logical value on the right.
INV will perform a bitwise inversion of the value on the right.
Both of these have the highest precedence so if the value being operated on is an
expression it should be surrounded by brackets. For example,
IF NOT (A = 3 OR A = 8) THEN ..
A Exponentiation (eg, b/*n means b")
* [\ MOD Multiplication, division, integer division and modulus (remainder)
+ - Addition and subtraction
X<<y X>>y These operate in a special way. << means that the value returned will be the

value of x shifted by y bits to the left while >> means the same only right
shifted. They are integer functions and any bits shifted off are discarded.

For a left shift any bits introduced are set to zero.
>> is an unsigned right shift where the top bit is set to 0

>>> is a signed right shift and any bits introduced are set to the value of the top
bit (bit 63).

<> < > <=
=>

=< >=

Inequality, less than, greater than, less than or equal to, less than or equal to
(alternative version), greater than or equal to, greater than or equal to (alternative
version)

Equality (also used in assignment to a variable, eg implied LET).

AND OR XOR

Conjunction, disjunction, exclusive or.
These are bitwise operators and can be used on 64-bit unsigned integers.

The operators AND, OR and XOR are integer bitwise operators. For example PRINT (3 AND 6) will output 2.

The other logical operations result in the integer 0 (zero) for false and 1 for true. For example the statement
PRINT 4 >= 5 will print the number zero on the output and the expression A = 3 > 2 will store +1 in A.

String Operators

+

Join two strings

<> < > <=
=>

=< >=

Inequality, less than, greater than, less than or equal to, less than or equal to
(alternative version), greater than or equal to, greater than or equal to (alternative
version).

Equality

String comparisons respect the case of the characters (ie "A" is greater than "a").

Page 69

Colour Maximite 2 User Manual Page 69

Options

This table lists the various option commands which can be used to configure MMBasic and change the way it
operates. Options that are marked as permanent will be saved in non volatile memory and automatically
restored when the Colour Maximite 2 is restarted. Options that are not permanent will be reset on startup.

Permanent?

UFTTUN ANLLE

OPTION ANGLE RADIANS |
DEGREES

This command switches trig functions between degrees and radians.
Acts on SIN, COS, TAN, ATN, ATAN2, MATH ATAN3, ACOS,
ASIN

This is a temporary option that is cleared to default (RADIANS) when
programs end, after an error, or after Ctrl-C so should be set at the top
of any program that requires to use angles in degrees.

UFTIUN AU TURUN

OPTION AUTORUN OFF | ON

Instructs MMBasic to automatically run the program in program flash
memory on power up or restart (eg, by the WATCHDOG timer).

This is turned off by the NEW command but other commands that
might change program memory (EDIT, etc) do not change this setting.
Entering the break key (default CTRL-C) at the console will interrupt
the running program and return to the command prompt.

If the CMMZ2 is set to run programs from RAM (OPTION RAM) then

the firmware will look for the file AUTORUN.BAS on reset or power
up and execute it if found.

UFTIUN Y_AXRID

OPTION Y_AXIS DOWN | UP

This command can only be used in a program and inverts the y axis for
drawing commands. le, with UP set 0,0 is at the bottom left as in a
typical graphing application. This is a temporary option that is cleared
to default (DOWN) when programs end, after an error, or after Ctrl-C.

UF TTUN BASE

OPTION BASEOQ |1

Set the lowest value for array subscripts to either 0 or 1.

This must be used before any arrays are declared and is reset to the
default of 0 on power up.

UF 1TUN BASELINE

OPTION BASELINE ON/OFF

This sets the CMM2 to run as a 400MHz first generation machine and is
intended to allow testing of code on the lowest common denominator.

UF T1HIUN BAUURAIE

OPTION BAUDRATE nbr

Set the baud rate for the serial console to 'nbr'. This can be any value
between 1200 (the minimum) and 1000000 (1MHz). This change is
made immediately and will be remembered when the power is cycled.

Using this command it is possible to set the console to an unworkable
baud rate and in this case the baudrate should be reset using a USB
keyboard and VGA monitor. If that is not available then reseting the
firmware will reset the baudrate to the default of 115200.

UF 1HTUN BREAK

OPTION BREAK nn

Set the value of the break key to the ASCII value 'nn'. This key is
used to interrupt a running program.

The value of the break key is set to CTRL-C key at power up but it can
be changed to any keyboard key using this command (for example,
OPTION BREAK 4 will set the break key to the CTRL-D key).

Setting this option to zero will disable the break function entirely.

Page 70

Colour Maximite 2 User Manual Page 70

UFTTUN CULVUURLLUDE

OPTION COLOURCODE ON
or
OPTION COLOURCODE OFF
Or

OPTION COLOURCODE
REVERSE

Turn on or off colour coding for the editor's output. Keywords will be
in cyan, comments in yellow, etc. The default is ON. OPTION
COLOURCODE REVERSE is the same as OPTION COLORCODE
OFF except that the text will be in reverse video black on white. This
will apply to the file manager and editor. The keyword
COLORCODE (USA spelling) can also be used.

On the serial console colour coding requires a terminal emulator that
can interpret the appropriate escape codes.

UF THTUN CUNDULE FUKI

OPTION CONSOLE PORT n

Allow you to select the serial port to be used as the console.

‘n’ can be 1, 2, or 3 (default). If this option is set all console output is
directed to the specified com port. This allows easier remote operation
using a wifi-uart or radio link.

If the option is set to other than default then COM3 is available on the
USB-B connector.

UF TTUN CUNDSULE

OPTION CONSOLE SCREEN
or

OPTION CONSOLE SERIAL
or

OPTION CONSOLE BOTH

OPTION CONSOLE SCREEN will disable the serial console for both
input and output and direct all output to the VGA monitor. This will
allow the VGA output to update much faster. With this option enabled
the serial port used for the console can be opened as COM3.

OPTION CONSOLE SERIAL will disable the console output to the
VGA screen and send all output to the serial console. This is useful
for debugging graphics applications as diagnostic PRINT statements
will not corrupt the screen display.

OPTION CONSOLE BOTH will enable both the serial and VGA
screen for console input/output. This is the default on power up unless
OPTION CONSOLE SAVE (see below) is used.

OPTION CONSOLE SAVE

This will save the current console mode (see above) as the default
stored mode.

If you are using the CMMZ2 as a stand alone computer it is
recommended that you execute OPTION CONSOLE SCREEN, then
OPTION CONSOLE SAVE to permanently disable the serial console
and thereby eliminate serial 1/0 overhead.

UF T1TUN URLF

OPTION CRLF mode

Defines what the USB keyboard will send when the Enter key is
pressed. 'mode' can be one of CR, LF or CRLF. The default is CRLF.

UF 1TUN DEFAULI

OPTION DEFAULT FLOAT |
INTEGER | STRING | NONE

Used to set the default type for a variable which is not explicitly defined.
If OPTION DEFAULT NONE is used then all variables must have their
type explicitly defined.

When a program is run the default is set to FLOAT for compatibility
with previous versions of MMBasic.

UFTIUN DEFAUL T IVIUDE

OPTION DEFAULT MODE n

Specifies the video mode for the command prompt, the editor and the
file manager and is the default mode when a program is run. n can be:

1= 800x600 Display 100x50 (default)

8 = 640x480 Display 80x40

9= 1024x768 Display 80x40

10 = 848x480 Display 106x40 (widescreen)
11 =1280x720 Display 128x45 (widescreen)
12 =960x540 Display 120x45 (widescreen)

14 = 960x540 Display 120x45 (widescreen, preferred over 12 but
may not work on all monitors)

Page 71

Colour Maximite 2 User Manual Page 71

15 =1280x1024 Display 160*85

16 = 19201080 Display 120x45 (widescreen, G2 only)
18 =1024x600 Display 102x37

Display is the no of columns and rows shown in the editor.
This setting is remembered even after a firmware upgrade.

UFTIUN Do3451

OPTION DS3231 ON/OFF

Generation 2 only. Enables and disables the use of the DS3231 RTC for
providing the time and date. NB: if OPTION MILLISECONDS is ON
the internal RTC will always be used for providing the time

UF TIUN ESUAFE

OPTION ESCAPE [OFF]

Enables the ability to escape special characters in string constants.
See the section Special Characters in Strings.

OPTION ESCAPE OFF will disable it. MM.ESC will return the current
setting.

UF TTUN EAFLIULI

OPTION EXPLICIT

Placing this command at the start of a program will require that every
variable be explicitly declared using the DIM, LOCAL or STATIC
commands before it can be used in the program.

This option is disabled by default when a program is run. If it is used it
must be specified before any variables are used.

UFTIUN EDIT FUNI

OPTION EDIT FONT SMALL |
NORMAL | MEDIUM | LARGE|
VERY LARGE

Sets the font to be used in the editor and file manager. The default is
NORMAL which is a 8x12 pixel font.

UF TTUN FLASH

OPTION FLASH [n]

Specifies that programs are to be run from FLASH memory and will
therefore be preserved when the CMMZ2 is powered off or reset.

The optional parameter ‘n’ specifies the starting point in 128Kbyte
pages of memory. ‘n’ defaults to 0.

For 0<=n<=4 the maximum program size is 512KBytes
for n=4 the maximum program size is 384KBytes
for n=5 the maximum program size is 256KBytes
for n=6 the maximum program size is 128KBytes

Using the OPTION FLASH command can increase flash lifespan by a
factor of 7 although it is unlikely ever to be needed for most users.

The flash is not written every time a program is run, flash is only written
if it does not match the newly tokenised code. i.e. a different or altered
program is being loaded.

See also OPTION RAM.

UFITIUN FLL

OPTION F11 string$

Define the string that will be generated when the F11 function key is
pressed at the command prompt.

Example:

OPTION F11 “RUN “+chr$(34)+"myprog” +chr$(34)+chr$(13)+chr$(10).
The maximum string length is 63 characters.

UFITIUN F1Z

OPTION F12 string$

Define the string that will be generated when the F12 function key is
pressed at the command prompt.

The maximum string length is 63 characters.

UFTIUN F10

OPTION F15 string$

Define the string that will be generated when the F15 (Shift+F3)
function key is pressed at the command prompt.

The maximum string length is 63 characters.

Page 72

Colour Maximite 2 User Manual Page 72

UFITIUN F10

OPTION F16 string$

Define the string that will be generated when the F16 (Shift+F4)
function key is pressed at the command prompt.

The maximum string length is 63 characters.

UFTIUN F1Y

OPTION F19 string$

Define the string that will be generated when the F19 (Shift+F7)
function key is pressed at the command prompt.

The maximum string length is 63 characters.

UFTIUN FZU

OPTION F20 string$

Define the string that will be generated when the F20 (shift+F8)
function key is pressed at the command prompt.

The maximum string length is 63 characters.

UF 1HUN AURIZUN AL UFFSET

OPTION HORIZONTAL
OFFSET mode, offset

Since different VGA monitors and HDMI converters interpret the
analog sync signals slightly differently, the screen image may appear
off-centre (e.g., a black bar on one side or the edge of the text being cut
off). This command allows you to calibrate the CMM2's signal to match
your specific hardware perfectly without needing to use the monitor's
physical adjustment buttons every time.

For each mode (1-18) , offset defines in pixels an adjustment to the start
position of the horizontal lines on the VGA display. Default is 0 and
allowed range is -128 to 127.

UF T1HTUN REYBUARD RKEFEAL

OPTION KEYBOARD
REPEAT firstchar, nextchar

Define the repeat characteristics of the USB keyboard when a key is
held down.

firstchar' is the time in milliseconds before a new character repeats.
Default is 600mSec, the valid range is 100 to 2000 mSec

'nextchars' is the time in milliseconds before subsequent character
repeats. Default is 150mSec, the valid range is 25 to 2000 mSec

UF TTUN LEGAULY

OPTION LEGACY ON
or
OPTION LEGACY OFF

This will turn on or off compatibility mode with the original Colour
Maximite. Commands such as LINE, CIRCLE and PIXEL work as
they originally did and all drawing commands will accept colours in the
range of 0 to 7. Notes:

o Keywords such as RED, BLUE, etc are not implemented so they
should be defined as constants if needed.

e The VGA display mode is not changed with this option so it
should be specifically set to MODE 4 for emulating the 480x432
resolution of the original Colour Maximite or MODE 5 for
emulating the 240x216 resolution. The colour depth must be set
to 8-hits.

UFTIUN LIS

OPTION LIST

This will list the settings of any options that have been changed from
their default setting and are the permanent type.

UF TTUN IVIAAU KLY

OPTION MAXCTRLS

Set the number of GUI Controls allowed. Defaults to 0
See GUI Controls for details.

UF HHUN IVIILLISECLUNDS

OPTION MILLISECONDS ON

or

OPTION MILLISECONDS OFF

Specifies that the TIMES function will, or will not, include milliseconds
as a decimal fraction of seconds in its output. The default is OFF.

Page 73

Colour Maximite 2 User Manual Page 73

UFTIUN IVIUUSE

OPTION MOUSE n
[,sensitivity]

OPTION MOUSE OFF

Enables a mouse to be used in the filemanager and editor. Use channel
0 for a PS2 mouse, or 1 to 3 for a Hobbytronic connected mouse. Note
if the mouse is enabled but not plugged in and working you will get an
error when entering the filemanager or editor.

Use OPTION MOUSE OFF to disable.

UFTHTUN UVERULUUK

OPTION OVERCLOCK
ON/OFF

This overclocks the CMM2 to 504MHz which is fastest speed at which
most of both the original and Generation 2 versions of the CMM2 run
reliably

UFTIUN FIN

OPTION PIN nbr

Set 'nbr' as the PIN (Personal Identification Number) for access to the
console prompt. 'nbr' can be any non zero number of up to eight
digits.

Whenever a running program tries to exit to the command prompt for
whatever reason MMBasic will request this number before the prompt
is presented. This is a security feature as without access to the
command prompt an intruder cannot list or change the program in
memory or modify the operation of MMBasic in any way. To disable
this feature enter zero for the PIN number (ie, OPTION PIN 0).

A permanent lock can be applied by using 99999999 for the PIN
number.

If a permanent lock is applied or the PIN number is lost the only way
to recover is to reset the Colour Maximite 2 firmware (as described in
the section Resetting MMBAasic).

UF T1HTUN FPRUFILING

OPTION PROFILING ON|OFF

Turns on or off profiling.

With profiling on you will see a performance impact of about 5%
caused by the profiling data collection which happens at the MMBasic
statement level.

In addition you will see a reduction in available variable RAM of
512KB. Note that profiling and OPTION RAM are mutually
incompatible on the original CMM2 H/W but not the Generation 2
With profiling enabled you can run your programs as usual and you
should see no change in behaviour other than as mentioned above.
You can see the way the program has run using the commands

See also LIST PROFILE

UFTIUN RAIVI

OPTION RAM

OPTION RAM causes the program to be loaded into RAM to run
rather than flash memory. This makes loading somewhat faster and
avoids impacting the flash write life. Program performance is similar
to running from flash (less than 1% slower).

Programs are lost with power, reset, or option change. Variable storage
is reduced by 512Kb on the original CMM2 H/W but not the
Generation 2

See also OPTION FLASH.

UF T1HTUN RESE|

OPTION RESET

Reset all saved options to their default values.

UFTIUN KI1U CALIBRAITE

OPTION RTC CALIBRATE #n

Used to calibrate the battery backed Real Time Clock that keeps time
in the Colour Maximite 2.

'n" is a number between -511 and + 512. A change of +1 should equate
to about 0.0824 seconds per day. Negative numbers will slow the
clock down, positive will speed it up (different from the Micromite).

This setting is remembered even after a firmware upgrade.

Page 74

Colour Maximite 2 User Manual Page 74

UF TTUN SEARUH PATH

OPTION SEARCH PATH
pathname$

This defines a path which will be searched when you use the existing
RUN command or the short form RUN command (*) if the file does
not exist in the current directory. Must start and end with a forward
slash. Maximum length 127 characters.

UF T1HTUN SLEEF

OPTION SLEEP n

n is the number of minutes (0-255) before the monitor is turned off
when at the command line. Set to 0 to disable. Any keypress will wake
the monitor

UFTIUN SV TTIVIING

OPTION SD TIMING
NORMAL

or
OPTION SD TIMING FAST

The fast option will speed up the timing for SD card access. This
results in read/write speeds being about 20% faster where cards can
accommodate the higher speed access.

The default is normal.
This setting is remembered even after a firmware upgrade.

UF 1HTUN SERIAL FULLUF

OPTION SERIAL PULLUP
ENABLE

or

OPTION SERIAL PULLUP
DISABLE

Enable or disable pullup resistors on the receive line of all serial ports
including the serial console.

The default is disabled.

UFTIUNSITATUS

OPTION STATUS ON | OFF

Enable or disable the status line at the bottom of the VGA screen. The
status line shows the date/time and the "current program filename"
used by the commands RUN, LIST and EDIT when a file name is not
specified. Default is ON.

UFITIUN IAB

OPTIONTAB 23|48

Set the spacing for the tab key. Default is 2.

UF 1HUN USBREYBUARD

OPTION USBKEYBOARD nn
[,LnoLED]

Set the language type for the attached USB keyboard. ‘nn is a two
character code defining the keyboard layout. The choices are US for
the standard keyboard layout in the USA, Australia and New Zealand
and UK for the United Kingdom, DE for Germany, FR for France and
ES for Spain.

The optional noLED parameter can be set to 1 to block sending the
command to the keyboard that lights the LEDs relating to Caps Lock
etc. This may be needed on some keyboards which do not process this
command properly and may lock up. It defaults to O if not specified
(i.e. the LED commands are sent).

This command can only be run from the command line and will cause a
reboot of the CMM2.

This setting is remembered even after a firmware upgrade.

UFITIUN VLU

OPTION VCC voltage

Specifies the voltage (Vcc) supplied to the ARM Cortex-M7 chip.

When using the analog inputs to measure voltage the ARM Cortex-M7
chip uses its supply voltage (Vcc) as its reference. This voltage can be
accurately measured using a DMM and set using this command for
more accurate measurement.

The parameter is not saved and should be initialised either on the
command line or in a program. The default if not set is 3.3.

UFITIUN VOAUUIFPUI

OPTION VGA OUTPUT
[HIGHMEDIUM|LOW]

Defines which CLUT (Colour Look Up Table) is used to configure the
VGA output. Default is HIGH.

Page 75

Colour Maximite 2 User Manual Page 75

Commands

Square brackets indicate that the parameter or characters are optional.

(sINgle quotaton mark)

* (single quotation mark)

Starts a comment and any text following it will be ignored. Comments can
be placed anywhere on a line.

¢ (quesuon mark)

? (question mark)

Shortcut for the PRINT command.

~ (asterix)

* (asterix)
*file [options]

The star/asterisk command is a shortcut for RUN that may only be used at
the MMBasic prompt. e.g.

[RUN (the current file)
* --nolcd RUN ,”--nolcd”
*myprog RUN "myprog"

*myprog —nolcd RUN "myprog", "--nolcd"

String expressions are not supported/evaluated by this command; any
arguments provided are passed as a literal string to the RUN command.

See RUN command for further detail.

ALUIVIIVIEN |

#COMMENT START
#COMMENT END

Directive to allow multi-line comments. The command must be in capitals.
Any lines between the two commands are completely ignored and not loaded
into memory

AUEFINE

#DEFINE “before”, “after”

This will cause all copies of the string “before” in a program to be replaced
by the string “after”. Both parameters must be literal quoted strings. Matches
within quoted strings in the program are ignored.

DEFINEs are executed in reverse order of creation so a symbol can be
redefined and from that point on in the program the new definition will be
active.

Case is ignored in the strings in the DEFINE directive.
The program can support up to 256 #define statements.

FINULLUDE THED

#INCLUDE file$

This will insert the file 'file$' into the program at that point. This file must
be resident on the SD card and must have the extension ".INC".

Inserting the text is performed by the pre-processor when the program is
loaded into program memory by the RUN command or on exiting EDIT or
AUTOSAVE using F2. Because this operation is performed before the
program is run it is recommended that include files are specified relative to
the directory holding the program or with full pathnames. Within the
program the command CHDIR will be executed at runtime so will not affect
MMBasic's ability to locate include files.

This command acts exactly as if the included file was manually inserted into
the code using an editor but it is more convenient for loading libraries and
other static code fragments. It essentially replaces the LIBRARY command
on the original Maximite.

Runtime errors in the included file are reported with the file name and line
number in the file.

The firmware will automatically check for changes in include files when a
program is RUN and update the program if required.

FIVIVIDEBU L

#MMDEBUG ON
#MMDEBUG OFF

These can appear anywhere in the program and are used by the program
loader.

If #MMDEBUG is OFF (default condition) then any lines starting with the
command MMDEBUG are ignored (effectively treated as comments) and

Page 76

Colour Maximite 2 User Manual Page 76

will have absolutely zero impact on program performance - they are simply
not loaded into program memory.

If #MMDEBUG is ON then lines starting MMDEBUG are included in the
program. See the MMDEBUG command for more details

ADUL

ADC

ADC OPEN frequency,
channell-pin [,channel2-pin]
[,channel3-pin] [, interrupt]

ADC FREQUENCY frequency

ADC TRIGGER channel, level
[,timeout]

ADC START channellarray!()
[,channel2array!()]
[,channel3array!()] [,C1min]
[,C1lmax] [,C2min] [,C2max]
[,C3min] [,C3max]

ADC CLOSE

The ADC functionality can capture up to 3 channels of analog data in the
background at up to 500KHz per channel (480KHz for 400MHz processors)
with user selectable triggering

Open the ADC channels. "frequency" is the sampling frequency in Hz.

Above 160KHz the conversion is 8-bits per channel

From 40KHz to 160KHz the conversion is 10-bits per channel
From 20KHz to 40KHz the conversion is 12-bits per channel
From 10KHz to 20KHz the conversion is 14-bits per channel
Below 10KHz conversion is 16-bits per channel

This is automatically applied in the firmware.

‘channel1-pin' can be one of 7,10,16,22,24,37
‘channel2-pin' can be one of 8,12,26,29
‘channel3-pin' can be one of 13,15

"interrupt’ is a normal MMBasic subroutine that will be called when the
conversion completes.

Allows the ADC frequency to be adjusted after the ADC START command.
This command is only valid if the number of bits calculated in the table
above does not change.

Sets up triggering of the ADC. This should be specified before the ADC
START command.

The ‘channel' can be a number between one and three depending on the
number of pins specified in the ADC OPEN command.

The 'level' can be between -VCC and VCC. A positive number indicates that
the trigger will be on a positive going transition through the specified
voltage. A negative number indicates a negative going transition through the
specified voltage.

'timeout' is the number of ADC samples to take before abandoning the wait
for the trigger condition. Setting a value equal to the frequency of the
sampling would give a timeout of 1 second.

This starts conversion into the specified arrays. The arrays must be floating
point and the same size. The size of the arrays defines the number of
conversions. Start can be called repeatedly once the ADC is OPEN ‘Cxmin’
and ‘Cxmax’ will scale the readings. For example, C1min=200 and
C1max=100 will create values ranging from 200 to 100 for equivalent
voltages of 0 - 3.3. If the scaling is not used the results are returned as a
voltage between 0 and OPTION VCC (defaults to 3.3V).

Closes the ADC and returns the pins to normal use

ARKL
ARC X, vy, r1, [r2], radl, rad2,
colour

Draws an arc of a circle or a given colour and width between two radials
(defined in degrees). Parameters for the ARC command are:

X" is the X coordinate of the centre of arc.

'y' is the Y coordinate of the centre of arc.

'rl" is the inner radius of the arc.

'r2" is the outer radius of the arc - can be omitted if 1 pixel wide.
'rad1' is the start radial of the arc in degrees.

'rad2' is the end radial of the arc in degrees.

Page 77

Colour Maximite 2 User Manual Page 77

‘colour’ is the colour of the arc.

ARRAY

ARRAY ADD in(), value ,out()

This adds (or appends for strings) the value 'value' to every element of the
matrix in() and puts the answer in out(). Works for arrays of any
dimensionality of strings and both integer and float (can convert between
integer and float). Setting num to 0 or “” is optimised and is a fast way of
copying an entire array. in() and out() can be the same array.

ARRAY INSERT targetarray(),
[d1] [,d2] [,d3] [,d4] [,d5] ,
sourcearray()

This is the opposite of ARRAY SLICE, has a very similar syntax, and allows
you, for example, to substitute a single vector into an array of vectors with a
single instruction or a one dimensional array of strings into a two
dimensional array of strings. The arrays can be numerical or strings and
‘sourcearray’ and ‘destinationarray’ must be the same (NB: can convert
between integers and floats for numerical arrays).

€g,
] OPTION BASE 1

DIM targetarray(3,4,5)

DIM sourcearray(4)=(1,2,3,4)

ARRAY INSERT targetarray(), 2, , 3, sourcearray()

Will set elements 2,1,3=1and 2,2,3=2and 2,3,3=3and 2,4,3=4

ARRAY SET value, array()

Sets all elements in array() to the value ‘value’. Value can be a number or a
string and ‘array’ must be the same (NB: can convert between integers and
floats). Note this is the fastest way of clearing an array by setting it to zero or
an empty string.

ARRAY SLICE sourcearray(),
[d1] [,d2] [,d3] [,d4] [,d5]
destinationarray()

This command copies a specified set of values from a multi-dimensional
array into a single dimensional array. It is much faster than using a FOR
loop. The slice is specified by giving a value for all but one of the source
array indices and there should be as many indices in the command, including
the blank one, as there are dimensions in the source array. The arrays can be
numerical or strings and ‘sourcearray’ and ‘destinationarray’ must be the
same (NB: can convert between integers and floats for numerical arrays).

€9,
| OPTION BASE 1

DIM a(3,4,5)

DIM b(4)

ARRAY SLICE a(Q), 2, , 3, bQ

Will copy the elements 2,1,3 and 2,2,3 and 2,3,3 and 2,4,3 into array b()

AUIUDAVE [N] TIED

AUTOSAVE file$

Enter automatic program entry mode.

This command will take lines of text from the console serial input and save
them to a file on the SD card specified as 'file$'.

They are echoed back to the terminal as entered.

This mode is terminated by pressing F1 on the console keyboard which will
then cause the received data to be saved to the SD card.

Terminating the transfer by pressing F2 will cause a similar save but then the
saved program will be immediately loaded into program memory and run.

Both F1 and F2 update the “current program name” which is used by RUN,
LIST and EDIT when a file is not specified. The transfer can also be
terminated using F6 which acts the same as F1 without updating the current
program name.

At any time this command can be aborted by Control-C which will leave
program memory untouched.

Page 78

Colour Maximite 2 User Manual Page 78

AUTOSAVE N file$

This is one way of transferring a BASIC program into the Maximite. The
program to be transferred can be pasted into a terminal emulator and this

command will capture the text stream and store it into program memory. It
can also be used for entering a small program directly at the console input.

This runs autosave as normal but does not echo the data back to the console.

It waits for the first character to be sent and then uses a timer that checks for
greater than 100mSec between characters. If it sees this delay it switches
back to normal input mode and outputs the message:

"Enter F1, F2 or F6 to exit"

You can then type additional characters to be saved or use one of the normal
exits.

BELIER

BEZIER x%!(),y%() [,n] [,colour]

Draws a Bezier curve with an unlimited number of control points. “x%()’
and ‘y%()’ are single dimension integer arrays holding the coordinates of the
control points. The Bezier curve always starts at the first control point. The
arrays must have the same dimensionality.

The optional parameter ‘n’ defines how many control points to use for the
plot. If omitted the size of “x%()’ and ‘y%()’ determine the number. N must
be >=2 and <= the array size.

The optional parameter ‘colour’ defines the colour to plot the curve (defaults
to white).

[=1}]

BIT(var%, bitno) = value

Sets a specific bit (0-63) in an integer variable. ‘value’ can be 0 or 1.
See also the BIT function

BI1TBANG
BITBANG BITSTREAM pinno,
n_transitions, array%()

This command is used to generate an extremely accurate bit sequence on the
pin specified. The pin must have previously been set up as an output and set
to the required starting level.

Notes:

e The array contains the length of each level in the bitstream in
microseconds. The maximum period allowed is 65.5 mSec

e The first transition will occur immediately on executing the command.

e The last period in the array is ignored other than defining the time
before control returns to the program or command line.

e The pin is left in the starting state if the number of transitions is even
and the opposite state if the number of transitions is odd.

BITBANG WS2812 type, pin,
colours%()

This command outputs the required signals to drive one or more WS2812
LED chips connected to 'pin'. Note that the pin must be set to a digital output
before this command is used.

'type' is a single character specifying the type of chip being driven:

O = original WS2812
B = WS2812B
S = SK6812

The 'colours%()' array should be an integer array sized to have exactly the
same number of elements as the number of LEDs to be driven. Each element
in the array should contain the colour in the normal RGB888 format (ie, 0 to
&HFFFFFF).

BLIT READ [#]b, X, ¥, w, h
[,pagenumber]

or

Copy one section of the display screen to or from a memory buffer.

BLIT READ will copy a portion of the display to the memory buffer ‘#b'.
The source coordinate is 'X' and 'y' and the width of the display area to copy

Page 79

Colour Maximite 2 User Manual Page 79

BLIT WRITE [#]b, x, y
[,orientation]

or
BLIT CLOSE [#]b

is 'w' and the height is 'h'. When this command is used the memory buffer is
automatically created and sufficient memory allocated. The optional
parameter page number specifies which page is to be read. The default is the
current write page. This buffer can be freed and the memory recovered with
the BLIT CLOSE command. Set the pagenumber to FRAMEBUFFER to
read from the framebuffer — see the FRAMEBUFFER command

BLIT WRITE will copy the memory buffer '#b' to the display. The
destination coordinate is 'x' and 'y' using the width/height of the buffer.

The optional 'orientation' parameter defaults to 4 and specifies how the
stored image data is changed as it is written out. It is the bitwise AND of the
following values:

&B001 = mirrored left to right

&B010 = mirrored top to bottom

&B100 = don't copy transparent pixels

BLIT CLOSE will close the memory buffer '#b' to allow it to be used for
another BLIT READ operation and recover the memory used.

Notes:
o Sixty four buffers are available ranging from #1 to #64.
¢ When specifying the buffer number the # symbol is optional.
o All other arguments are in pixels.

BLIT x1, y1, X2, y2, w, h [,
page] [,orientation]

Copy one section of the display screen to another part of the display.

The source coordinate is 'x1' and 'y1'. The destination coordinate is 'x2' and
'y2'. The width of the screen area to copy is 'w' and the height is 'h'.

'page’ is the page number that the image data is read from; it is then written
to the current write page as specified by the PAGE WRITE n command. If
'page’ is omitted the data is read from the write page. Set the page to
FRAMEBUFFER to read from the framebuffer — see the FRAMEBUFFER
command.

All arguments are in pixels and the source and destination can overlap.

The optional 'orientation' parameter specifies how the section of the screen is
changed as it is copied. It is the bitwise AND of the following values:

&B001 = mirrored left to right
&B010 = mirrored top to bottom
&B100 = don't copy transparent pixels

BUA

BOX x, y, w, h [, Iw] [c]
[,fill]

Draws a box on the VGA monitor with the top left hand corner at 'x' and 'y’
with a width of 'w' pixels and a height of 'h' pixels.

‘Iw' is the width of the sides of the box and can be zero. It defaults to 1.

'c" is the colour and defaults to the default foreground colour if not specified.
fill' is the fill colour. It can be omitted or set to -1 in which case the box will
not be filled.

All parameters can be expressed as arrays and the software will plot the
number of boxes as determined by the dimensions of the smallest array. X,
v, 'w', and 'h" must all be arrays or all be single variables /constants
otherwise an error will be generated. 'lw', 'c', and fill can be either arrays or
single variables/constants.

See the chapter "Graphics Functions" for a definition of the colours and
graphics coordinates.

BOX AND_PIXELS x, y, w, h,
colour [,pageno]

BOX OR_PIXELS X, y, w, h,

Executes the requested logical operation between the pixels in the area
defined on the page specified (defaults to the write page) with the colour
specified

Page 80

Colour Maximite 2 User Manual Page 80

colour [,pageno]

BOX XOR_PIXELS x, y, w, h,
colour [,pageno]

BYIE

BYTE(var$, byteno)=value

Sets a specific byte in a string to an integer value. ‘value’ can be in the range
0-255. The byteno can be between 1 and the current length of the string
variable. This is the equivalent of MID$(var$,byteno,1)=CHR$(value) but
executes much faster.

See also the BYTE function.

CALL
CALL usersubname$
[,usersubparameters,....]

This is an efficient way of programmatically calling user defined subroutines
(see also the CALL() function). In many case it can allow you to get rid of
complex SELECT and IF THEN ELSEIF ENDIF clauses and is processed in
a much more efficient way. The “usersubname$” can be any string or
variable or function that resolves to the name of a normal user subroutine
(not an in-built command). The “usersubparameters” are the same
parameters that would be used to call the subroutine directly. A typical use
could be writing any sort of emulator where one of a large number of
subroutines should be called depending on some variable. It also allows a
way of passing a subroutine name to another subroutine or function as a
variable.

CAN

CAN OPEN index, speed, mode

CAN OPEN index,0, mode,
prescaler, segl, seg2, sjw

CAN OPEN
index,0,mode,prescaler,segl,seg
2,sjw,brs,dsize,dprescaler,dseg1,
dseg2,dsjw

CAN FILTER index, eid, type,
config, id1, id2

CAN FILTER GLOBAL, id, eid,
idr, eidr

CAN START

CAN STOP

CAN SEND id, eid, rtr, dlc, msg,
ret

CAN READ fifo, id, eid, rtr, dlc,
msg, fmi, ret

CAN CLOSE

See Appendix | CAN Support for details on usage.

Opens the CAN adapter using preset values determined by index at the
desired speed and mode.

Long form of CAN OPEN which allows user to customise the speed and
sample point for Classic CAN

Long form of CAN OPEN which allows user to customise the speed and
sample points for data as well for FD CAN

Adds a filter to the CAN

Sets the Global filter

Starts the CAN receiving messages.

Stops the CAN receiving messages. Also allows filters to be changed.

Sends a message via the first available transmit buffer.

Reads a message from either FIFOO or FIFO1 based on the value of fifo.

Closed the CAN and releases the pins used for CAN-Rx and CAN-Tx

LAl

CAT S$, N$

Concatenates the strings by appending N$ to S$. This is functionally the
same a S$ = S$ + N$ but operates faster.

Page 81

Colour Maximite 2 User Manual Page 81

CHUIK

CHDIR dir$

Change the current working directory on the SD card to ‘dir$’

The special entry “..” represents the parent of the current directory and “.”
represents the current directory. "/" is the root directory.

CIRKULE

CIRCLE x, vy, r [Iw] [, 4] [,
o [, fill]

Draw a circle on the video output centred at 'x' and 'y' with a radius of 'r' on
the VGA monitor. ‘Iw’ is optional and is the line width (defaults to 1). 'c'is
the optional colour and defaults to the current foreground colour if not
specified.

The optional 'a' is a floating point number which will define the aspect ratio.
If the aspect is not specified the default is 1.0 which gives a standard circle

'fill" is the fill colour. It can be omitted or set to -1 in which case the circle
will not be filled.

All parameters can be expressed as arrays and the software will plot the
number of circles as determined by the dimensions of the smallest array. X',
'y and 'r' must all be arrays or all be single variables /constants otherwise an
error will be generated. 'lw', 'a', 'c’, and fill can be either arrays or single
variables/constants.

See the chapter "Basic Drawing Commands" for a definition of the colours
and graphics coordinates.

CULEAR

CLEAR

Delete all variables and recover the memory used by them.

LLUdE

CLOSE [#]nbr [,[#]nbr] ...

Close the file(s) previously opened with the file number ‘#fnbr’

Close the serial communications port(s) previously opened with the file
number ‘nbr’. The # is optional. Also see the OPEN command.

The text “GPS” can be substituted for [#]nbr to close a communications port
used for a GPS receiver.

CLS

CLS [colour]

Clears the VGA screen and the terminal emulator's screen. Optionally
‘colour' can be specified which will be used for the VGA background when
clearing the screen. Note: the terminal emulator screen is only cleared if the
current write page is page 0

LCULVUUK

COLOUR fore [, back]
or
COLOR fore [, back]

Sets the default colour for commands (PRINT, etc) that display on the on the
VGA monitor. ‘fore' is the foreground colour, 'back’ is the background
colour. The background is optional and if not specified will default to black.

CUNDSI
CONST id = expression
[, id = expression] ... etc

Create a constant identifier which cannot be changed once created.

id" is the identifier which follows the same rules as for variables. The
identifier can have a type suffix (!, %, or $) but it is not required. Ifitis
specified it must match the type of 'expression’. 'expression' is the value of
the identifier and it can be a normal expression (including user defined
functions) which will be evaluated when the constant is created.

A constant defined outside a sub or function is global and can be seen
throughout the program. A constant defined inside a sub or function is local
to that routine and will hide a global constant with the same name.

CUNIINUE

CONTINUE

Resume running a program that has been stopped by an END statement, an
error, or CTRL-C. The command is also used to exit a BREAK state and
resume program execution following a MMDEBUG BREAK command. The
program will restart with the next statement following the previous stopping
point.

Note that it is not always possible to resume the program correctly — this
particularly applies to complex programs with graphics, music, nested loops
and/or nested subroutines and functions.

Page 82

Colour Maximite 2 User Manual Page 82

CONTINUE DO or
CONTINUE FOR

Skip to the end of a DO/LOOP or a FOR/NEXT loop. The loop condition
will then be tested and if still valid the loop will continue with the next
iteration.

CUPFY

COPY fnamel$ TO fname2$

Copy a file from ‘fnamel$’ to ‘fname2$’. Both are strings.

A directory path can be used in both ‘fname$' and ‘fname$'. If the paths
differ the file specified in ‘fname$' will be copied to the path specified in
‘fname2$’ with the file name as specified.

CUNIRULLER ULASSIL

CONTROLLER CLASSIC
OPEN [n] [,interrupt [,bitmask]]
or

CONTROLLER CLASSIC
CLOSE [n]

Opens a Classic port for communications.

'n' is the 12C channel that the Classic is connected to. If not specified
channel 3 is opened (the front panel Wii connector).

"interrupt’ is an optional MMbasic interrupt routine that will be triggered
when buttons are pressed. The interrupts trigger once on the button press
and will not re-interrupt until it is released. The bitmask specifies which of
the 15 buttons on the Wii Classic will trigger an interrupt. The default is that
they all will. See the CLASSIC function for details of which bits in the
bitmask control which buttons.

The firmware checks for the existence of a controller on open and will throw
error if not found. Once open the Classic is polled continuously in the
background once every 16mSec. The 12C transfers are under interrupt
control and non-blocking for the rest of the firmware. The 12C channel is
opened at 100KHz - other 12C devices can share the 12C port with the
Classic if required in which case 12C(n) OPEN should not be called.

CONTROLLER CLASSIC CLOSE will close the Wii port ‘n’. If the
parameter is omitted channel 3 is closed.

Also see the CLASSIC() function for accessing the state of the device.

CUNIRULLEKR IVIUUSE

CONTROLLER MOUSE OPEN
[n] [,LBinterrupt]J[,RBinterrupt]
[,sensitivity][,LBUpinterrupt]

or

CONTROLLER MOUSE
CLOSE [n]

Opens a Hobbytronic Mouse port for communications.

n' is the 12C channel that the mouse controller is connected to. If not
specified channel 2 is opened (pins 27 and 28 on the 1/0 port).

'‘LBinterrupt’ and 'RBinterrupt' are optional MMbasic interrupt routines that
will be triggered when one or other of the mouse buttons is pressed. The
interrupts trigger once on the button press and will not re-interrupt until it is
released. The firmware checks for the existence of a controller on open and
will throw error if not found. This error can be trapped with the ON ERROR
command.

Once open the mouse I/F is polled continuously in the background once
every 16mSec. The 12C transfers are under interrupt control and non-
blocking for the rest of the firmware. The 12C channel is opened at 100KHz
- other 12C devices can share the 12C port with the mouse if required in
which case 12C(n) OPEN should not be called.

The sensitivity of the Hobbytronic mice can be controller by specifying a
number between 0 and 10.

0 indicates that the default automatic sensitivity should be used. Other values
will explicitly set the sensitivity as per the Hobbytronic documentation.

LBUpinterrupt is an optional interrupt routine which is called when the left
button is released CONTROLLER MOUSE CLOSE will close the mouse
port ‘n’. If the parameter is omitted channel 2 is closed.

Also see the MOUSE() function for accessing the state of the device.

CONTROLLER MOUSE OPEN
0 [,LBinterrupt [,RBinterrupt]]

or
CONTROLLER MOUSE

Opens a PS2 port for communications.

On the original CMMZ2 to make the connection the mouse clock line is
connected to pin 33 of the CMMZ2 and the mouse data to pin 32. Both lines
MUST be pulled up to 5V with 4K7 resistors.

Page 83

Colour Maximite 2 User Manual Page 83

CLOSE 0

On the CMM2 Generation 2 additional pins are allocated to the PS2 mouse
and it is connected to the lower USB port. Pullup resistors are already fitted
to the CMM2 Generation 2 PCB.

'‘LBinterrupt’ and 'RBinterrupt' are optional MMbasic interrupt routines that
will be triggered when one or other of the mouse buttons is pressed. The
interrupts trigger once on the button press and will not re-interrupt until it is
released.

The PS2 mouse sensitivity can be set between 0 and 8.

Values of 1-4 set the resolution of the mouse to 1,2, 4 or 8 counts/mm.
Values 5-8 do the same but in addition enable mouse scaling which gives a
non-linear relationship between speed and count.

See https://isdaman.com/alsos/hardware/mouse/ps2interface.htm for more
details. NB: not all PS2 mice seem to implement these commands.

The firmware checks for the existence of a controller on open and will throw
error if not found. This error can be trapped with the ON ERROR command.

Once open the mouse I/F operates under interrupt control so has no
performance impact unless the mouse is movinhg.

CONTROLLER MOUSE CLOSE 0 will close the PS2 mouse port. Also see
the MOUSE() function for accessing the state of the device.

CUNIRULLER NUNUHURK

CONTROLLER NUNCHUK
OPEN [n] [,Zinterrupt
[,Cinterrupt]]

or

CONTROLLER NUNCHUK
CLOSE [n]

Opens a Nunchuk port for communications.

'n'" is the 12C channel that the Nunchuk is connected to. If not specified
channel 3 is opened (the front panel Wii connector).

‘Cinterrupt' and 'Zinterrupt' are optional MMbasic interrupt routines that will
be triggered when one or other of the buttons is pressed. The interrupts
trigger once on the button press and will not re-interrupt until it is released.

The firmware checks for the existence of a controller on open and will throw
error if not found. This error can be trapped with the ON ERROR command.
If a classic controller is plugged in instead, an error will not be thrown,
instead you can check the ID code with NUNCHUK(T, channel).

Once open the Nunchuk is polled continuously in the background once every
16mSec. The 12C transfers are under interrupt control and non-blocking for
the rest of the firmware. The 12C channel is opened at 100KHz - other 12C
devices can share the 12C port with the Nunchuk if required in which case
12C(n) OPEN should not be called.

CONTROLLER NUNCHUK CLOSE will close the Nunchuk port “‘n’. If the
parameter is omitted channel 3 is closed.

Also see the NUNCHUK() function for accessing the state of the device.

CFUNUITIUN

CFUNCTION name [type [,
type] ...Jtype

hex [[hex[...]

hex [[hex[...]
END CFUNCTION

Defines the binary code for an embedded machine code program module
written in C or ARM assembler. The module will appear in MMBasic as the
function 'name’ and can be used in the same manner as a built-in function.

Multiple embedded routines can be used in a program with each defining a
different module with a different 'name’.

The first 'hex' word is a 32 bit word which is the offset in bytes from the start
of the CFUNCTION to the entry point of the embedded routine (usually the
function main()). The following hex words are the compiled binary code for
the module. These are automatically programmed into MMBasic when the
program is saved. Each 'hex' must be exactly eight hex digits representing
the bits in a 32-bit word and be separated by one or more spaces or new
lines. The command must be terminated by a matching END CFUNCTION.
Any errors in the data format will be reported when the program is run.

During execution MMBasic will skip over any CFUNCTION/CSUB
commands so they can be placed anywhere in the program.

Page 84

Colour Maximite 2 User Manual Page 84

The type of each parameter should be specified in the definition.

As well as defining the types of the parameters a CFunction must also
specify the type of the value returned. For example, the following returns a
float:

CFunction MyFunction (integer, integer, string) float

If type is specified then the type of the variables passed is checked and an
error given if the expected type does not match

Note:

» Up to ten arguments can be specified (‘argl’, 'arg2’, etc).

» Ifavariable or array is specified as an argument the C routine will
receive a pointer to the memory allocated to the variable or array and the C
routine can change this memory to return a value to the caller. In the case of
arrays, they should be passed with empty brackets e.g. arg(). In the
CFUNCTION/CSUB the argument will be supplied as a pointer to the first
element of the array.

» Constants and expressions will be passed to the embedded C routine as
pointers to a temporary memory space holding the value.

e CFUNCTIONSs must call routinechecks() every millisecond or so both to
keep the USB keyboard active and also ensure the watchdog doesn't trigger.
CFUNCTIONS that run to completion within a couple of milliseconds can
ignore this.

LouUB

CSUB name [type [, type] ...]
hex [[hex[...]
hex [[hex[...]

END CSUB

Defines the binary code for an embedded machine code program module
written in C or ARM assembler. The module will appear in MMBasic as the
command 'name’ and can be used in the same manner as a built-in command.

Multiple embedded routines can be used in a program with each defining a
different module with a different 'name’.

The first 'hex' word is a 32 bit word which is the offset in bytes from the start
of the CSUB to the entry point of the embedded routine (usually the function
main()). The following hex words are the compiled binary code for the
module. These are automatically programmed into MMBasic when the
program is saved. Each 'hex' must be exactly eight hex digits representing
the bits in a 32-bit word and be separated by one or more spaces or new
lines. The command must be terminated by a matching END CSUB. Any
errors in the data format will be reported when the program is run.

During execution MMBasic will skip over any CSUB commands so they can
be placed anywhere in the program.

The type of each parameter can be specified in the definition. For example:
CSub MySub integer, integer, string.

This specifies that there will be three parameters, the first two being integers
and the third a string. Note:

e Up to ten arguments can be specified (‘argl’, ‘arg2', etc).

e [favariable or array is specified as an argument the C routine will
receive a pointer to the memory allocated to the variable or array and
the C routine can change this memory to return a value to the caller. In
the case of arrays, they should be passed with empty brackets e.g.
arg(). In the CSUB the argument will be supplied as a pointer to the
first element of the array.

e Constants and expressions will be passed to the embedded C routine
as pointers to a temporary memory space holding the value.

e CSUBs must call routinechecks() every millisecond or so both to keep
the USB keyboard active and also ensure the watchdog doesn't trigger.
CSUBs that run to completion within a couple of milliseconds can
ignore this.

Page 85

Colour Maximite 2 User Manual Page 85

LFU RES AR

CPU RESTART

Will force a restart of the processor.

This will clear all variables and reset everything (eg, timers, COM ports, I1°C,
etc) similar to a power up situation but without the power up banner.

If OPTION AUTORUN has been set the program will restart.

DAL

DAC n, voltage

DAC START frequency,
DAC1array%o()

[LDAC2array%()] [,interrupt]

DAC STOP

Sets the DAC channel (1 or 2) to the voltage requested. This command
cannot be used if the DACs are in use for audio output.

Sets up the DAC to create an arbitrary waveform. DAC1larray%() and
optional DAC2array%() should contain numbers in the range 0-4095 to suit
the 12-bit DACs. The output occurs in the background and control returns to
MMBasic immediately.

The output runs continuously unless the optional interrupt is specified. In
this case the contents of the array(s) is played once and the interrupt is
triggered on completion. The software automatically and separately uses the
number of items in each of the arrays to drive the DACs.

The frequency is the rate at which the DACs change value. The maximum
frequency is 700KHz.

As an example if there are 180 items in the array c%() which are displayed
at a frequency of 100,000 Hz this will give a waveform frequency of
100,000/180 = 555Hz. If there are 90 items in the array d%() at the same
frequency of 100,000 Hz this will at the same time produce a waveform
frequency of 100,000/90 = 1111Hz.

Stops the DAC output and returns the DACs to normal use.

DAIA

DATA constant[,constant]...

Stores numerical and string constants to be accessed by READ.

In general string constants should be surrounded by double quotes (). An
exception is when the string consists of just alphanumeric characters that do
not represent MMBasic keywords (such as THEN, WHILE, etc). In that
case quotes are not needed.

Numerical constants can also be expressions such as 5 * 60.

DAITED

DATES$ = "DD-MM-YY"
or
DATES$ = "DD/MM/YY"

Set the date of the internal clock/calendar.
DD, MM and YY are numbers, for example: DATES$ = "28-7-2024"
The year can be abbreviated to two digits (ie, 24).

The date is set to "01-01-2000" on first power up but the date will be
remembered and kept updated as long as the battery is installed and can
maintain a voltage of over 2.5V.

Battery life should be 3 to 4 years even if the CMM2 is left powered off.

Note that the time (set using the TIME$= command) will be lost when the
power is cycled if a correct date is not set.

UEFINEFUNI

DEFINEFONT #n
hex [[hex[...]
hex [[hex[...]
END DEFINEFONT

This will define an embedded font which can be used exactly same as the
built in fonts (ie, selected using the FONT command or specified in the
TEXT command).

MMBasic must execute the font in order for it to be loaded. '#n'is the font's
reference number (1 to 16). It can be the same as an existing font (except
fonts 1, 6 and 7) and in that case it will replace that font.

Each 'hex' must be exactly eight hex digits and be separated by spaces or
new lines from the next. Multiple lines of 'hex' words can be used with the
command terminated by a matching END DEFINEFONT.

DIl

DIM [type] decl [,decl]...

Declares one or more variables (ie, makes the variable name and its

Page 86

Colour Maximite 2 User Manual Page 86

where 'decl' is:

var [length] [type] [init]
'var' is a variable name with
optional dimensions

'length’ is used to set the
maximum size of the string to 'n'
asin LENGTHn

'type' is one of FLOAT or
INTEGER or STRING (the type
can be prefixed by the keyword
AS - asin AS FLOAT)

"init" is the value to initialise the
variable and consists of:
= <expression>

For a simple variable one
expression is used, for an array a
list of comma separated
expressions surrounded by
brackets is used.

Examples:

DIM nbr(50)

DIM INTEGER nbr(50)

DIM name AS STRING

DIM a, b$, nbr(100), strn$(20)
DIM a(5,5,5), b(1000)

DIM strn$(200) LENGTH 20

DIM STRING
strn(200) LENGTH 20

DIM a = 1234, b = 345
DIM STRING strn = "text"
DIM x%(3) = (11, 22, 33, 44)

characteristics known to the interpreter).

When OPTION EXPLICIT is used (as recommended) the DIM, LOCAL or
STATIC commands are the only way that a variable can be created. If this
option is not used then using the DIM command is optional and if not used
the variable will be created automatically when first referenced.

The type of the variable (ie, string, float or integer) can be specified in one of
three ways:

By using a type suffix (ie, !, % or $ for float, integer or string). For
example:
DIM nbr%, amount!, name$

By using one of the keywords FLOAT, INTEGER or STRING immediately
after the command DIM and before the variable(s) are listed. The specified
type then applies to all variables listed (ie, it does not have to be repeated).
For example:

DIM STRING first _name, last _name, city

By using the Microsoft convention of using the keyword "AS" and the type
keyword (ie, FLOAT, INTEGER or STRING) after each variable. If you
use this method the type must be specified for each variable and can be
changed from variable to variable. For example:

DIM amount AS FLOAT, name AS STRING

Floating point or integer variables will be set to zero when created and
strings will be set to an empty string (ie, ""). You can initialise the value of
the variable with something different by using an equals symbol (=) and an
expression following the variable definition. For example:

DIM STRING city = "Perth", house = "Brick"

The initialising value can be an expression (including other variables) and
will be evaluated when the DIM command is executed. See the chapter
"Defining and Using Variables" for more examples of the syntax.

As well as declaring simple variables the DIM command will also declare
arrayed variables (ie, an indexed variable with up to five dimensions). Note
that this is different from the original Colour Maximite and Micromite
versions of MMBasic which supported up to eight dimensions.

Following the variable's name the dimensions are specified by a list of
numbers separated by commas and enclosed in brackets. For example:

DIM array(10, 20)

Each number specifies the number of elements in each dimension. Normally
the numbering of each dimension starts at 0 but the OPTION BASE
command can be used to change this to 1.

The above example specifies a two dimensional array with 11 elements (0 to 10)
in the first dimension and 21 (0 to 20) in the second dimension. The total number
of elements is 231 and because each floating point number on the Colour
Maximite 2 requires 8 bytes a total of 1848 bytes of memory will be allocated.

Strings will default to allocating 255 bytes (ie, characters) of memory for
each element and this can quickly use up memory when defining arrays of
strings. In that case the LENGTH keyword can be used to specify the
amount of memory to be allocated to each element and therefore the
maximum length of the string that can be stored. This allocation ('n") can be
from 1 to 255 characters.

For example: DIM STRING s(5, 10) will declare a string array with
66 elements consuming 16,896 bytes of memory while:

DIM STRING s(5, 10) LENGTH 20
Will only consume 1,386 bytes of memory. Note that the amount of

memory allocated for each element is n + 1 as the extra byte is used to track
the actual length of the string stored in each element.

Page 87

Colour Maximite 2 User Manual Page 87

If a string longer than 'n' is assigned to an element of the array an error will be
produced. Other than this, string arrays created with the LENGTH keyword act
exactly the same as other string arrays. This keyword can also be used with non
array string variables but it will not save any memory unless the length is less
than 16 when it will both save memory and improve performance.

In the above example you can also use the Microsoft syntax of specifying the
type after the length qualifier. For example:

DIM s(5, 10) LENGTH 20 AS STRING

Arrays can also be initialised when they are declared by adding an equals
symbol (=) followed by a bracketed list of values at the end of the
declaration. For example:

DIM INTEGER nbr(4) = (22, 44, 55, 66, 88)
or DIM s$(3) = (“"foo", "boo™, 'doo™, "zo0')

Note that the number of initialising values must match the number of
elements in the array including the base value set by OPTION BASE. Ifa
multi dimensioned array is initialised then the first dimension will be
initialised first followed by the second, etc.

Also note that the initialising values must be after the LENGTH qualifier (if
used) and after the type declaration (if used).

Vv

DO
<statements>

LOOP

This structure will loop forever; the EXIT DO command can be used to
terminate the loop or control must be explicitly transferred outside of the
loop by commands like GOTO or EXIT SUB (if in a subroutine).

DO WHILE expression

Loops while "expression" is true (this is equivalent to the older WHILE-

<statements> WEND loop, also implemented in MMBasic). If, at the start, the expression
LOOP is false the statements in the loop will not be executed, not even once.
DO Loops until the expression following UNTIL is true. Because the test is
<statements> made at the end of the loop the statements inside the loop will be executed at

LOOP UNTIL expression

least once, even if the expression is true.

URAWSD

DRAW3D

DRAWS3D SHOW n,x,y,z
[,nocull][,usefurthest]

DRAW3D WRITE n,x,y,z
[,nocull][,usefurthest]

V5.07.00 and later includes a 3D engine. There are ten sub commands. See
the 3D Engine sections for details. The recent enhancement to

DRAW3D SHOW/WRITE are shown here and are also in the updated The
3D Engine document included in the download.

Rendering of the 3D object works by Painters algorithm. This works by
sorting the faces and drawing those further away first. In addition the
MMBasic firmware supports "back face culling”. This doesn't draw faces
that are pointing away from the camera. In order to sort the faces the current
MMbasic code uses the Z axis position of the face centroid. This works in
many situations but in some 3D models it is better to use the furthest vertex
and sort on that. I've added that as an option to DRAW3D SHOW and
DRAW3D WRITE. Set usefurthest to 1 to use the furthest vertex and zero
(default) to use the centroid.

EUII

EDIT Invoke the full screen editor.

See the section Full Screen Editor for details of how to use the editor.
ELSE L.) -
ELSE Introduces a default condition in a multiline IF statement.

See the multiline IF statement for more details.

Page 88

Colour Maximite 2 User Manual Page 88

https://fruitoftheshed.com/wiki/lib/exe/fetch.php?media=mmbasic_hardware:cmm2:the_3d_engine.pdf

ELSEIF

ELSEIF expression THEN
or
ELSE IF expression THEN

Introduces a secondary condition in a multiline IF statement.
See the multiline IF statement for more details.

ENUD

END

End the running program and return to the command prompt.

ENUD LOUB

END CSUB

Marks the end of a C subroutine. See the CSUB command.
Each CSUB must have one and only one matching END CSUB statement.

ENU FUNUTTUN

END FUNCTION

Marks the end of a user defined function. See the FUNCTION command.

Each function must have one and only one matching END FUNCTION
statement. Use EXIT FUNCTION if you need to return from a function
from within its body.

ENUIF

ENDIF Terminates a multiline IF statement.

or See the multiline IF statement for more details.

END IF

END SUDB

END SUB Marks the end of a user defined subroutine. See the SUB command.

Each sub must have one and only one matching END SUB statement. Use
EXIT SUB if you need to return from a subroutine from within its body.

ERASE

ERASE variable [,variable]...

Deletes variables and frees up the memory allocated to them. This will work
with arrayed variables and normal (non array) variables. Arrays can be
specified using empty brackets (eg, dat()) or just by specifying the variable's
name (eg, dat).

Use CLEAR to delete all variables at the same time (including arrays).

ERRUK

ERROR [error_msg$]

Forces an error and terminates the program. This is normally used in
debugging or to trap events that should not occur.

EAELCUIE

EXECUTE command$

This executes the Basic command "command$". Use should be limited to
basic commands that execute sequentially for example the GOTO statement
will not work properly

Things that are tested and work OK include GOSUB, Subroutine calls, other
simple statements (like PRINT and simple assignments)

Multiple statements separated by : are not allowed and will error

The command sets an internal watchdog before executing the requested
command and if control does not return to the command, like ina GOTO
statement, the timer will expire. In this case you will get the message
"Command timeout".

RUN is a special case and will cancel the timer allowing you to use the
command to chain programs if required.

EAIT [DUFUKFUNU TTUN[SUB]

EXIT DO

EXIT FOR

EXIT FUNCTION
EXIT SUB

EXIT DO provides an early exit from a DO...LOOP

EXIT FOR provides an early exit from a FOR...NEXT loop.

EXIT FUNCTION provides an early exit from a defined function.
EXIT SUB provides an early exit from a defined subroutine.

The old standard of EXIT on its own (exit a do loop) is also supported.

Page 89

Colour Maximite 2 User Manual Page 89

FILES

FILES

Invoke the File Manager. To simply list the files on the SD card (as in the
original Colour Maximite) use the command LIST FILES or LS.

See the section File Manager for details of how to use the file manager.

FILL
FILL x, vy, fillcolour
[,bordercolour]

Implements a flood fill by reading the colour of the pixel at coordinates x,y.
When used without the optional ‘bordercolour’ the command will read the
colour at position ‘x.y on the display and then fill the area from that point
where the current colour is the same with the new colour “fillcolour’.

If the optional ‘bordercolour’ is specified, the “fillcolour’ will replace
whatever colour is already there until it hits the ‘bordercolour’ specified.

See also PIXEL [FILL].

FLAG

FLAG(n%)=value

Sets a bit in a system flag register. N% can be between 0 and 63 (i.e. 64 flag
bits are available). Value can be 0 or 1.

See also the FLAGS command and FLAG function and MM.FLAGS

FLALS

FLAGS=value

Sets all bits in the system flag register to the value specified.
See also the FLAG command and the FLAGS function and MM.FLAGS

FUNI

FONT [#]font-number, scaling

This will set the default font for displaying text on the VGA screen.

Fonts are specified as a number. For example, #2 (the # is optional) See the
chapter "Basic Graphics" for details of the available fonts.

'scaling' can range from 1 to 15 and will multiply the size of the pixels
making the displayed character correspondingly wider and higher. Eg, a
scale of 2 will double the height and width.

FUK

FOR counter = start TO finish
[STEP increment]

Initiates a FOR-NEXT loop with the 'counter’ initially set to 'start' and
incrementing in 'increment’ steps (default is 1) until ‘counter' is greater than
finish'.

The ‘increment’ can be an integer or floating point number. Note that using
a floating point fractional number for ‘increment' can accumulate rounding
errors in 'counter' which could cause the loop to terminate early or late.

'increment’ can be negative in which case 'finish' should be less than 'start’
and the loop will count downwards.

See also the NEXT command.

FRAIVIEBUFFER

FRAMEBUFFER

FRAMEBUFFER CREATE
HorizontalSize%, VerticalSize%

FRAMEBUFFER WRITE

FRAMEBUFFER BACKUP

This command allows you to create, use and remove a variable size
framebuffer which should make many applications which have a working
area bigger than the screen easier to program. While using a framebuffer
setting a different graphics mode which changes the colour depth will cause
an error. JPG files cannot be loaded to the framebuffer and will error if tried.
The framebuffer is deleted by Ctrl-C and by running a new program.

This command creates a framebuffer with the width and height specified in
pixels. HorizontalSize>=MM.HRES and <=1600: VerticalSize>=MM.VRES
and <=1200

This command sets all drawing commands to write to the framebuffer and
inherit the width and height defined.

This command creates a backup copy of the framebuffer. If a backup already
exists it is overwritten. This allows the programmer to save the background
before he/she starts writing non-static data to it. NB: It won't be possible to
use this command if a very large framebuffer is specified in 12 or 16-bit
colour depth. A sensible error will be given in this case.

Page 90

Colour Maximite 2 User Manual Page 90

FRAMEBUFFER RESTORE [x,
y, w, h]

FRAMEBUFFER WINDOW X,
y, page [l or B]

FRAMEBUFFER CLOSE

This command restores all or part of the framebuffer from the backup. This
allows the programmer to “clean” all or part of the framebuffer before
adding new non-static items

This command copies an area MM.HRES by MM.VRES from the
framebuffer with top left at x,y to the page specified, The optional parameter
specifies if the copy is Immediate or during frame Blanking

This command releases the memory resources used by the framebuffer and
backup allowing a new framebuffer to be created with a different size

FUNU TTUN

FUNCTION xxx (argl
[Larg2, ...]) [AS <type>}
<statements>
<statements>
XXX = <return value>
END FUNCTION

Defines a callable function. This is the same as adding a new function to
MMBasic while it is running your program.

'xxX' is the function name and it must meet the specifications for naming a
variable. The type of the function can be specified by using a type suffix
(ie, xxx$) or by specifying the type using AS <type> at the end of the
functions definition. For example:

FUNCTION xxx (argl, arg2) AS STRING

‘argl’, 'arg2', etc are the arguments or parameters to the function (the
brackets are always required, even if there are no arguments). An array is
specified by using empty brackets. ie, arg3(). The type of the argument
can be specified by using a type suffix (ie, argl$) or by specifying the type
using AS <type> (ie, argl AS STRING).

The argument can also be another defined function or the same function if
recursion is to be used (the recursion stack is limited to 50 nested calls).

To set the return value of the function you assign the value to the function's
name. For example:

FUNCTION SQUARE(a)

SQUARE = a * a

END FUNCTION
Every definition must have one END FUNCTION statement. When this is
reached the function will return its value to the expression from which it was
called. The command EXIT FUNCTION can be used for an early exit.

You use the function by using its name and arguments in a program just as
you would a normal MMBasic function. For example:

PRINT SQUARE(56.8)

When the function is called each argument in the caller is matched to the
argument in the function definition. These arguments are available only
inside the function.

Functions can be called with a variable number of arguments. Any omitted
arguments in the function's list will be set to zero or a null string.

Arguments in the caller's list that are a variable (ie, not an expression or
constant) will be passed by reference to the function. This means that any
changes to the corresponding argument in the function will also be copied to
the caller's variable and therefore may be accessed after the function has
ended. The argument can be prefixed with BYVAL which will prevent this
mechanism and cause only the value to be used. Alternatively, the prefix
BYREF instructs MMBasic that a reference is required and an error will be
generated if that cannot be done.

Arrays are passed by specifying the array name with empty brackets (eg,
arg()) and are always passed by reference.

You must not jump into or out of a function using commands like GOTO,
GOSUB, etc. Doing so will have undefined side effects including the
possibility of ruining your day.

Page 91

Colour Maximite 2 User Manual Page 91

GUIV

GOTO target

Branches program execution to the target, which can be a line number or a
label.

LUI

GUI

This is a full implementation of the GUI controls as popularised on the
Micromite Plus. This is a suite of advanced graphic controls that respond to
input from a mouse. These include on screen switches, buttons, indicator
lights, keyboard, etc.

The GUI controls have their own manual: GUI Controls and Programming.pdf
Note:

e The mouse must be connected and working for the GUI commands to
work and has been set up using the OPTION MOUSE command

e The number of controls allowed is defined using the OPTION
MAXCTRLS n command where "n" is the maximum number that can
be used to identify a control. By default this is set to zero so it must be
configured before the GUI controls can be used (recommended is 100).

Differences compared to the Micromite Plus implementation:

e The Colour Maximite 2 uses the mouse as the user interface rather than
touch.

e GUI BEEP not implemented. Use PLAY TONE or PULSE in the click
interrupt routine if required

e The TOUCH function is renamed CLICK.

LUI LURDUK

GUI CURSOR

GUI CURSOR ON [cursorno [,
X, Y [,cursorcolour]]]

GUI CURSOR x, y

GUI CURSOR OFF
GUI CURSOR HIDE
GUI CURSOR SHOW

GUI CURSOR COLOUR
cursorcolour

GUI CURSOR LOAD "fname"

GUI CURSOR LINK MOUSE

GUI CURSOUR UNLINK

Page 92

The GUI CURSOR command provides a mechanism for displaying and
manipulating a cursor on the screen. The cursor sits above all other graphics
and nothing can overwrite it. BLIT, page copy, text, sprite, box etc. can all
be used and the cursor will stay in view unless deliberately hidden. The
cursor is always on PAGE 0 for colours 8 and 16 and page 1 for 12-bit
colour and it can be moved even if the write page is somewhere else.

Cursor no can be 0 (Default: mouse type pointer) or 1 (cross), in addition the
user can load his own cursor using a SPRITE look-alike file in which case
this is cursor no. 2 For cursor numbers 0 and 1 the programmer can override
the default white cursor by specifying the colour in the open command.

Moves the cursor to x, y. Does not display the cursor if hidden but just
updates the location.

Turns off the cursor
Hides the cursor but maintains its position
Shows a hidden cursor in its stored position

Changes the colour of cursor number 0 or 1. Does not impact loaded cursors
where its colours are specified by the cursor designer

Loads a user cursor from a file in the Maximite sprite format with a minor
change. The header is now Width, Height, Xoffset, Yoffset. The two offsets
determine where on the cursor the pointer is defined to be. So the mouse
cursor has offsets 0,0 and the cross has offsets 7,7

These commands link and unlink mouse activity to the cursor. When linked
the cursor will automatically track the mouse activity. The mouse must be
opened using the CONTROLLER MOUSE OPEN command before the

Colour Maximite 2 User Manual Page 92

MOUSE

cursor is linked.

GUTBITVIAF

GUI BITMAP X, vy, bits [,
width] [, height] [, scale] [, c]
[, be]

Displays the bits in a bitmap on the screen starting at 'x' and 'y’

'height' and 'width' are the dimensions of the bitmap as displayed on the
screen and default to 8x8.

'scale’ is optional and defaults to that set by the FONT command.

'c" is the drawing colour and 'bc' is the background colour. They are optional
and default to the current foreground and background colours.

The bitmap can be an integer or a string variable or constant and is drawn
using the first byte as the first bits of the top line (bit 7 first, then bit 6, etc)
followed by the next byte, etc. When the top line has been filled the next
line of the displayed bitmap will start with the next bit in the integer or
string.

See the chapter "Basic Drawing Commands" for a definition of the colours
and graphics coordinates.

HELF

HELP [text]

This displays up to 3 lines of help that match the "text". text isn't quoted.

If text isn't specified you can type characters into the help command and the
display will show up to three lines than match. Use the delete key to remove
characters/

You can use up arrow and down arrow to move through matches (e.qg. for
things like MM.INFO)

Exit the help command with either ESC or F12

The intention of the facility is just to provide a quick check on command
syntax and will never replace this written manual.

The command can be called from within the editor using F12. In this case
the HELP command is called with any characters surrounding the cursor that
can form part of a command or function name. So if the cursor is positioned
on the 'l' of a DIM command the help will immediately show the syntax for
DIM

HUIVIIV

HUMID pin, tvar, hvar
[[DHT11]

Returns the temperature and humidity using the DHT22 sensor.

Alternative versions of the DHT22 are the AM2303 or the RHTO03 (all are
compatible).

'pin" is the 1/O pin connected to the sensor. Any I/O pin may be used.

'tvar' is the variable that will hold the measured temperature and 'hvar' is the
same for humidity. Both must be present and both must be floating point
variables.

For example: HUMID 3, TEMP!, HUMIDITY!

Temperature is measured in °C and the humidity is percent relative humidity.
Both will be measured with a resolution of 0.1. If an error occurs (sensor not
connected or corrupt signal) both values will be 1000.0.

Normally the signal pin of the DHT22 should be pulled up by a 1K to 10K
resistor (4.7K recommended) to the supply voltage.

The optional DHT11 parameter modifies the timings to work with the
DHT11. Set to 1 for DHT11 and 0 or omit for DHT22.

NB: the firmware will also accept the older DHT22 command

VAV

12C

12C OPEN speed, timeout

Page 93

The 12C commands will send and receive data over an 1°C channel.

12C (no suffix) refers to channel 1 while commands 12C2 and 12C3 refer to
channels 2 and 3 using the same syntax. Also see Appendix B.

Enables the 1°C module in master mode. ‘speed’ is the clock speed (in KHz)
to use and must be one of 100, 400 or 1000.

Colour Maximite 2 User Manual Page 93

12C WRITE addr, option,
sendlen, senddata [,sendata]

12C READ addr, option, rcvlen,
rcvbuf

12C CLOSE

‘timeout’ is a value in milliseconds after which the master send and receive
commands will be interrupted if they have not completed. The minimum
value is 100. A value of zero will disable the timeout (though this is not
recommended).

Send data to the 1°C slave device. ‘addr’ is the slave’s I°C address.

‘option’ can be 0 for normal operation or 1 to keep control of the bus after
the command (a stop condition will not be sent at the completion of the
command)

‘sendlen’ is the number of bytes to send. ‘senddata’ is the data to be sent -
this can be specified in various ways (all values sent will be between 0 and
255).

Notes:
e The data can be supplied as individual bytes on the command line.
Example: 12C WRITE &H6F, 0, 3, &H23, &H43, &H25

e The data can be in a one dimensional array specified with empty
brackets (ie, no dimensions). ‘sendlen’ bytes of the array will be sent
starting with the first element. Example: 12C WRITE &H6F, 0, 3,
ARRAY()

The data can be a string variable (not a constant).
Example: 12C WRITE &H6F, 0, 3, STRINGS

Get data from the 1°C slave device. ‘addr’ is the slave’s 1°C address.

‘option’ can be 0 for normal operation or 1 to keep control of the bus after
the command (a stop condition will not be sent at the completion of the
command)

‘rcvlen’ is the number of bytes to receive.
‘rcvbuf’ is the variable or array used to save the received data - this can be:
e A string variable. Bytes will be stored as sequential characters.

¢ A one dimensional array of numbers specified with empty brackets.
Received bytes will be stored in sequential elements of the array
starting with the first.
Example: 12C READ &H6F, 0, 3, ARRAY()

A normal numeric variable (in this case rcvlen must be 1).

Disables the master 1°C module and returns the 1/O pins to a "not
configured" state. They can then be configured using SETPIN. This
command will also send a stop if the bus is still held.

-

IF expr THEN stmt [: stmt]

or

IF expr THEN stmt ELSE stmt

Evaluates the expression ‘expr' and performs the statement following the
THEN keyword if it is true or skips to the next line if false. If there are more
statements on the line (separated by colons (:) they will also be executed if
true or skipped if false.

The ELSE keyword is optional and if present only one true statement is
allowed following the THEN keyword. If 'expr' is resolved to be false the
single statement following the ELSE keyword will be executed.

The ‘“THEN statement’ construct can be also replaced with:
GOTO linenumber | label’.

This type of IF statement is all on one line.

IF expression THEN
<statements>
[ELSEIF expression THEN

Multiline IF statement with optional ELSE and ELSEIF cases and ending
with ENDIF. Each component is on a separate line.

Evaluates 'expression’ and performs the statement(s) following THEN if the

Page 94

Colour Maximite 2 User Manual Page 94

<statements>]
[ELSE

<statements>]
ENDIF

expression is true or optionally the statement(s) following the ELSE
statement if false. The ELSEIF statement (if present) is executed if the
previous condition is false and it starts a new IF chain with further ELSE
and/or ELSEIF statements as required.

One ENDIF is used to terminate the multiline IF.

IIVIAGE

IMAGE RESIZE X, y, width,
height, new_Xx, new_y,
new_width, new_height
[,page_number]

IMAGE RESIZE_FAST x, Y,
width, height, new_x, new _y,
new_width, new_height
[,page_number] [,flag]

This takes the part of the image with a top corner at 'x', 'y' and of specified
'width' and 'height' and resizes it writing it back to the area specified by
'new_x', 'new_y', 'new_width', new_height. The command will both increase
and decrease the size of the part of the image chosen. It uses a bi-linear
interpolation to generate the new pixels.

The 'page number' is the page that the image data is read from it is then
written to the current write page as specified by the PAGE WRITE n
command. If 'page_number' is omitted the data is read from the write page.

Use the text FRAMEBUFFER as the page no. to read from the framebuffer.
IMAGE RESIZE uses bi-linear interpolation to resize the image.

IMAGE RESIZE_FAST uses a nearest neighbour technique and is much
faster but the resulting image quality will not be as good. If flag is set to 1
then black pixels are not written in the resized image.

IMAGE ROTATE x, y, width,
height, new_x, new_y, angle!
[,page_number]

IMAGE ROTATE_FAST x, Y,
width, height, new_x, new _y,
angle! [,page_number] [,flag]

Takes the part of the image with a top corner at 'x', 'y" and of specified
'‘width' and 'height' and rotates it about its centre in a clockwise direction by
‘angle' (in degrees). Areas of the image that after rotation are outside of the
area specified are cropped. The image is then drawn with the top left corner
specified by new_x and new_y

The 'page number' is the page that the image data is read from and it is
written to the current write page as specified by the PAGE WRITE n
command. If 'page_number' is omitted the data is read from the write page.

Use the text FRAMEBUFFER as the page no. to read from the framebuffer.
IMAGE ROTATE uses bi-linear interpolation to resize the image.

IMAGE ROTATE_FAST uses a nearest neighbour technigue and is much
faster but the resulting image quality will not be as good. If flag is set to 1
then black pixels are not written in the rotated image.

IMAGE WARP_H x, y, w, h, x1,
y1, hl, x2, y2, h2 [,readpage]
[.flag]

IMAGE WARP_V X, y, w, h, x1,
y1, wl, x2, y2, w2 [,readpage]
[.flag]

These commands allow you to modify an image by translating and/or
stretching or compressing one of the axis.

X, ¥, w, h define the top left coordinates and the width and height of the
image to read from the current write page or optional read page

In both cases x1 and x1 define the top left corner of the area to write

In both cases x2 and y2 define the top right corner of the area to write

When warping horizontally h1 and h2 define the height of the transformed
area at the left edge and right edge

When warping vertically wl and w2 define the width of the transformed area
at the top edge and bottom edge.

If flag is set to 1 then black pixels are not written in the warped image.

INU

INC var [,increment]

Increments the variable “var” by either 1 or, if specified, the value in
increment. “increment” can have a negative. This is functionally the same as

var = var + increment
but is processed much faster

INFU |

INPUT ["prompt$";] varl [,var2
[, var3 [, etc]]]

Will take a list of values separated by commas (,) entered at the console and
will assign them to a sequential list of variables.

Page 95

Colour Maximite 2 User Manual Page 95

For example, if the command is: INPUT a, b, ¢
And the following is typed on the keyboard: 23, 87, 66
Thena=23and b =87 and c = 66

The list of variables can be a mix of float, integer or string variables. The
values entered at the console must correspond to the type of variable.

If a single value is entered a comma is not required (however that value
cannot contain a comma).

‘prompt$’ is a string constant (not a variable or expression) and if specified
it will be printed first. Normally the prompt is terminated with a semicolon
(;) and in that case a question mark will be printed following the prompt. If
the prompt is terminated with a comma (,) rather than the semicolon (;) the

guestion mark will be suppressed.

INPUT #nbr,
list of variables

Same as the normal INPUT command except that the input is read from a
file previously opened for INPUT as ‘#fnbr’ or a serial port previously
opened for INPUT as ‘nbr’. See the OPEN command.

#0 can be used which refers to the console.

INTERRUF |

INTERRUPT [myint]

This command triggers a software interrupt. The interrupt is set up using
INTERRUPT ‘myint” where ‘myint’ is the name of a subroutine that will be
executed when the interrupt is triggered.

Use INTERRUPT 0 to disable the interrupt
Use INTERRUPT without parameters to trigger the interrupt.
NB: the interrupt can also be triggered from within a CSUB

Note that while the code within the ‘myint’ subroutine is running other
interrupts are not serviced.

IK

IR dev, key , int
or

IR CLOSE

Decodes NEC or Sony infrared remote control signals.

An IR Receiver Module is used to sense the IR light and demodulate the
signal. It should be connected to the IR pin (see the pinout tables). This
command will automatically set that pin to an input.

The IR signal decode is done in the background and the program will continue
after this command without interruption. 'dev' and 'key' should be numeric
variables and their values will be updated whenever a new signal is received
(‘dev' is the device code transmitted by the remote and 'key' is the key pressed).

"int" is a user defined subroutine that will be called when a new key press is
received or when the existing key is held down for auto repeat. In the
interrupt subroutine the program can examine the variables 'dev' and 'key' and
take appropriate action.

The IR CLOSE command will terminate the IR decoder and return the 1/0
pin to a not configured state.

Note that for the NEC protocol the bits in 'dev' and 'key' are reversed. For
example, in 'key" bit 0 should be bit 7, bit 1 should be bit 6, etc. This does
not affect normal use but if you are looking for a specific numerical code
provided by a manufacturer you should reverse the bits. This describes how
to do it: http://www.thebackshed.com/forum/forum_posts.asp?TID=8367

See the chapter "Special Hardware Devices" for more details.

Page 96

Colour Maximite 2 User Manual Page 96

IR SEND pin, dev, key

Generate a 12-bit Sony Remote Control protocol infrared signal.

'pin" is the I/O pin to use. This can be any I/O pin which will be automati-
cally configured as an output and should be connected to an infrared LED.
Idle is low with high levels indicating when the LED should be turned on.

'dev' is the device being controlled and is a number from 0 to 31, 'key" is the
simulated key press and is a number from 0 to 127.

The IR signal is modulated at about 38KHz and sending the signal takes
about 25mS.

KILL

KILL file$

Deletes the file or empty directory specified by “file$’. If there is an
extension it must be specified.

LIviiD
LMID(array%o(),start [,num]) =
string$

Inserts string$ into the longstring array%o() at position start replacing num
existing characters. If num isn't specified then it is calculated from the length
of string$. num can be 0 in which case string$ is inserted at the position
specified.

LEl

LET variable = expression

Assigns the value of 'expression' to the variable. LET is automatically
assumed if a statement does not start with a command. For example:

Var = 56

LINE

LINE x1y1,x2,y2[, [JLW [, C]]

Draws a line starting at the coordinates ‘x1’ and ‘y1’ and ending at ‘x2’ and
‘y2’.

‘LW’ is the line’s width. It defaults to 1 if not specified. For lines that have a
defined width and the x1 and y1 coordinate define the top-left pixel of the
thick line. i.e. the line is to the right of the specified position or below it on
the screen.

If width is given as a -ve value then width will apply to lines in all directions
and they are centred on the given origin and destination coordinates.

All parameters can now be expressed as arrays and the software will plot the
number of lines as determined by the dimensions of the smallest array. 'x1,
'y1', 'x2', and 'y2' must all be arrays or all be single variables /constants
otherwise an error will be generated. 'lw' and 'c’ can be either arrays or
single variables/constants.

LINE AA

LINE AA xLy1,x2,y2[LW [, C]]

Draws a line with anti-aliasing . The parameters are as per the LINE
command above. However this version will use variable intensity values of
the specified colour to reduce the “staggered” quality of diagonal lines. In
addition this version can draw diagonal lines of any width. Note that it does
not accept arrays as parameters.

LINE GRAFH

LINE GRAPH x(), y(),colour

This command generates a line graph of the coordinate pairs specified in
“x()” and “y()”. The graph will have n-1 segments where there a n elements
in the x and y arrays.

Page 97

Colour Maximite 2 User Manual Page 97

LINE PLOT ydata() [,nbr]
[xstart] [,xinc] [,ystart]
[Lyinc][,colour]

Plots a line graph from an array of y-axis data points.
‘ydata’ is an array of floats or integers to be plotted

‘nbr “is the number of line segments to be plotted - defaults to the lesser of
the array size and MM.HRES-2 if omitted

‘xstart’ is the x-coordinate to start plotting - defaults to 0
‘xinc’ is the increment along the x-axis to plot each coordinate - defaults to 1

‘ystart’ is the location in ydata to start the plot - defaults to the array start.
NB: respects OPTION BASE

‘yinc’ is the increment to the index into ydata to add for each point to be
plotted

‘colour’ is the colour to draw the line

LINE INFUI

LINE INPUT [prompt$,]
string-variable$

Reads an entire line from the console input into ‘string-variable$’.

‘prompt$’ is a string constant (not a variable or expression) and if specified
it will be printed first.

Unlike INPUT, this command will read a whole line, not stopping for
comma delimited data items.

A question mark is not printed unless it is part of ‘prompt$’.

LINE INPUT #nbr,
string-variable$

Same as the LINE INPUT command except that the input is read from a file
previously opened for INPUT as “#fnbr’ or a serial communications port
previously opened for INPUT as ‘nbr’. See the OPEN command.

#0 can be used which refers to the console. The # character is required.

LIST |ALL|

LIST [file$]
or
LIST ALL [file$]

List a program on the serial console.
LIST on its own will list the program with a pause at every screen full.
LIST ALL will list the program without pauses. This is useful if you wish to

transfer the program in the Maximite to a terminal emulator on a PC that has
the ability to capture its input stream to a file.

In most cases the filename ‘file$' is required however if EDIT file$ or RUN
file$ has been used previously the “current program name" will have been
set and in that case LIST will default to using that filename.

LIST FILES

LIST FILES [fspec$] [, sort]

Lists files in the current directory on the SD card.

‘fspec$' (if specified) can contain search wildcards. Question marks (?) will
match any character and an asterisk (*) will match any number of characters.
If omitted, all files will be listed.

For example:

* Find all entries

*TXT Find all entries with an extension of TXT

E*.* Find all entries starting with E

X2X.* Find all three letter file names starting and ending with X
‘sort” specifies the sort order as follows:

size by ascending size

time by ascending time/date

name by file name (default if not specified)

type by file extension

LIST [CUIVIIVIANDS | FUNU TTUNS]

LIST COMMANDS
or
LIST FUNCTIONS

Lists all valid commands or functions

LIST PALES

LIST PAGES

Lists the start address, width, height, and size of all the video pages for the

Page 98

Colour Maximite 2 User Manual Page 98

current mode. In addition it shows whether for specific modes lines are
duplicated in order to support the video output format.

LIST PRUFILE [LOV]

LIST PROFILE
LIST PROFILE CSV

Outputs information stored when OPTION PROFILING is ON.
There are 5 comma-separated fields in the output
The first field is the number of times a given statement has been run

The second field is the average time in Microseconds taken to execute the
statement

The third field is the crunched statement as stored in memory. This is quoted
to make it easier to load into excel etc.

The fourth field is the filename in which the statement appears. This is blank
if the statement is in the main program, otherwise it gives the filename of the
include file in which the statement is to be found

The fifth and final field gives the line number of the statement in the source
file.

When LIST PROFILE CSV is used a file is created in the same directory as
the main program with the .BAS extension replaced with .CSV

LIST PROFILE can only be used at the command line

LIST PROFILE CSV can be used in a program allowing you to create and
rename multiple files while a program is running if required

LUAD DAITA

LOAD DATA fname$, address

Loads the binary contents of file "fname$" and stores it in CMM2 memory
starting at "address". See also SAVE DATA

LUAD FUNI

LOAD FONT file$

Load the font contained in 'file$' on the SD card and install it as font #8.
See the section Basic Graphics earlier in this manual.

You can convert font files designed for the original Colour Maximite using
FontTweak from: https://www.c-com.com.au/MMedit.htm

LOAD [BMP|GIF|JPG|PNG]
LOAD BMP file$ [, x, y]
or

LOAD GIF [file$ [, x, V1]
or

LOAD JPGfile$ [, x, y]
or

LOAD PNG file$ [, x, y]
[, transparency_cut_off]

Load an image from the SD card and display it on the VGA monitor. "file$'
is the name of the file and 'x' and 'y" are the screen coordinates for the top left
hand corner of the image. If the coordinates are not specified the image will
be drawn at the top left hand position on the screen.

If an extension is not specified the appropriate extension will be added to the
file name.

All types of the BMP format are supported including black and white and
true colour 24-bit images. The image can be of any size and pixels off the
screen will be ignored.

GIFs can be a single image or animated. If it is animated it will start playing
in the background (ie, program execution will continue while it is playing).
If an animated GIF is already running it will be replaced by the new one. If
LOAD GIF is used without any parameters it will stop the currently playing
animated GIF.

JPG images cannot use progressive encoding and are limited to being
completely within the screen resolution (ie, pixels cannot extend beyond the
screen limits). MODE 2,16 is the optimum for displaying JPG images as the
hardware decoder can write RGB565 pixels directly into the frame buffer.
For all other modes, the firmware has to adjust the image by duplicating
lines (mode 3) and/or converting from RGB565 to RGB332.

PNG files must be in the RGB888 or ARGB8888 format and can be sized up
to the current resolution of the screen. If the x & y start coordinates are
specified pixels off the screen will be ignored.

If the transparency level is specified and none-zero then:
o IfaPNG file is in ARGB8888 format the 'transparency_cut_off’

Page 99

Colour Maximite 2 User Manual Page 99

https://www.c-com.com.au/MMedit.htm

parameter is used to determine whether the pixel should be solid or
missing/transparent. Valid values are 1 to 15, no default. MMBasic
compares the 4 most significant bits of the transparency data in the file
with the cut off value and assigns a transparency of 0 or 15 depending
on the comparison. This allows RGB(0,0,0) to be a valid solid colour.

o |If the file is in RGB888 format then an RGB level of 0,0,0 is used to
determine transparency as there is no other information to use. If the
'transparency_cut_off' level is not specified all pixels will be loaded as
solid colours as with any other image load.

LUCAL

LOCAL variable [, variables]
See DIM for the full syntax.

Defines a list of variable names as local to the subroutine or function.

This command uses exactly the same syntax as DIM and will create
variables that will only be visible within the subroutine or function. They
will be automatically discarded when the subroutine or function exits.

LUNUGLO I RING

LONGSTRING

LONGSTRING AES128
ENCRYPT CBC/ECB/CTR
key$/key[!/%](), in%(), out%()
Liv$/iv[1/%]0]

LONGSTRING AES128
DECRYPT CBC/ECB/CTR
key$/key[1/%](), in%(), out%()

LONGSTRING APPEND
array%(), string$

LONGSTRING CLEAR
array%()

LONGSTRING COPY dest%(),
src%o()

LONGSTRING CONCAT
dest%(), src%()

LONGSTRING LCASE
array%()

Page 100

The LONGSTRING commands allow for the manipulation of strings longer
than the normal MMBasic limit of 255 characters.

Variables for holding long strings must be defined as single dimensioned
integer arrays with the number of elements set to the number of characters
required for the maximum string length divided by eight. The reason for
dividing by eight is that each integer in an MMBasic array occupies eight
bytes. Note that the long string routines do not check for overflow in the
length of the strings. If an attempt is made to create a string longer than a
long string variable's size the outcome will be undefined.

Encrypts or decrypts the longstring in in%() putting the answer in out%()
For CBC and CTR modes the encryption will generate a random
initialisation

vector and prepend out%() with the IV. If an explicit IV is specified this will
be used instead of the random vector and this will be prepended to out%o()
For CBC and CTR decryption the firmware assumes that the first 16 bytes of
in%() are the initialisation vector. (IV is not a parameter for DECRYPT)

In the case where you want to transmit a message without IV you can use

LONGSTRING RIGHT to remove the IV before sending the message. In
this case the recipient must know the IV as well as the key and create a
complete longstring before using DECRYPT. This can be done by using
LONGSTRING CONCAT to add the incoming message to a longstring
containing the IV.

Append a normal MMBasic string to a long string variable. array%o() is a
long string variable while string$ is a normal MMBasic string expression.

Will clear the long string variable array%(). ie, it will be set to an empty
string.

Copy one long string to another. dest%() is the destination variable and
src%() is the source variable. Whatever was in dest%() will be overwritten.

Concatenate one long string to another. dest%() is the destination variable
and src%() is the source variable. src%() will the added to the end of
dest%() (the destination will not be overwritten).

Will convert any uppercase characters in array%() to lowercase. array%()
must be long string variable.

Colour Maximite 2 User Manual Page 100

LONGSTRING LEFT dest%(),
src%(), nbr

LONGSTRING LOAD
array%(), nbr, string$

LONGSTRING MID dest%(),
src%(), start, nbr

LONGSTRING PRINT [#n,]
src%()[]

LONGSTRING REPLACE
array%() , string$, start

LONGSTRING RESIZE
array%(), nbr

LONGSTRING RIGHT dest%(),
src%(), nbr

LONGSTRING SETBYTE
array%(), nbr, data

LONGSTRING TRIM array%(),
nbr

LONGSTRING UCASE
array%()

Will copy the left hand 'nbr' characters from src%() to dest%() overwriting
whatever was in dest%(). ie, copy from the beginning of src%(). src%() and
dest%() must be long string variables. 'nbr' must be an integer constant or
expression.

Will copy 'nbr' characters from string$ to the long string variable array%()
overwriting whatever was in array%o().

Will copy 'nbr' characters from src%() to dest%() starting at character
position 'start' overwriting whatever was in dest%(). ie, copy from the
middle of src%(). 'nbr'is optional and if omitted the characters from 'start' to
the end of the string will be copied src%() and dest%() must be long string
variables. 'start' and 'nbr' must be an integer constants or expressions.

Prints the longstring stored in ‘src%()’ to the file or COM port opened as
“#n’. If ‘#n’ is not specified the output will be sent to the console.

A semicolon (;) at the end of the command will suppress the automatic
output of a carriage return/ newline at the end of a print statement.

Will substitute characters in the normal MMBasic string string$ into an
existing long string array%() starting at position “start’ in the long string.

Sets the size of the longstring to nbr. This overrides the size set by other
longstring commands so should be used with caution. Typical use would be
in using a longstring as a byte array.

Will copy the right hand 'nbr' characters from src%() to dest%() overwriting
whatever was in dest%(). ie, copy from the end of src%(). src%() and
dest%() must be long string variables. 'nbr' must be an integer constant or
expression.

sets byte nbr to the value “data”, nbr respects OPTION BASE

Will trim “nbr’ characters from the left of a long string. array%() must be a
long string variables. 'nbr' must be an integer constant or expression.

Will convert any lowercase characters in array%() to uppercase. array%!()
must be long string variable.

LOUF

LOOP [UNTIL expression]

Terminates a program loop: see DO.

L>
LS

An alias for the LIST FILES command.

IVIAF

MAP

MAP(n) =rgh%

MAP MAXIMITE

MAP SET

Page 101

The MAP commands allow the programmer to set the colours used in 8-bit
colour modes. Each value in the 8-bit colour pallet can be set to an
independent 24-bit colour.

This will assign the 24-bit colour 'rgh% to all pixels with the 8-bit colour
value of 'n'. The change is activated after the MAP SET command

This will set the colour map to the colours implemented in the original
Colour Maximite.

This will cause MMBasic to update the colour map (set using

Colour Maximite 2 User Manual Page 101

MAP(n)=rgh%) during the next frame blanking interval.

MAP RESET This will reset the colour map to the default colours. This map is used to
assign 24-bit colours to individual values in the 8-bit colour space.
mKTH The math command performs many simple mathematical calculations that

Simple array arithmetic
MATH SET nbr, array()

MATH SCALE in(), scale ,out()

MATH POWER in(), power,
out()

MATH ADD in(), num ,out()

MATH INTERPOLATE in1(),
in2(), ratio, out()

MATH SLICE sourcearray(),
[d1] [,d2] [,d3] [,d4] [,d5],
destinationarray()

MATH INSERT targetarray(),

[d1] [,d2] [d3] [,d4] [.d5] ,
sourcearray()

MATH SHIFT inarray%(), nbr,
outarray%() [,U]

MATH WINDOW in(), minout,
maxout, out() [,minin, maxin]

Page 102

can be programmed in BASIC but there are speed advantages to coding
looping structures in the firmware and there is the advantage that once
debugged they are there for everyone without re-inventing the wheel. Note:
2 dimensional maths matrices are always specified DIM matrix(n_columns,
n_rows) and of course the dimensions respect OPTION BASE. Quaternions
are stored as a 5 element array w, X, y, z, magnitude.

See ARRAY SET

This scales the matrix in() by the scalar scale and puts the answer in out().
Works for arrays of any dimensionality of both integer and float and can
convert between. Setting b to 1 is optimised and is the fastest way of copying
an entire array.

Raises each element in in() to the power defined and puts the output in out()

See ARRAY ADD

This command This implements the following equation on every array
element:

out = (in2 - in1) * ratio + inl

Arrays can have any number of dimensions and must be distinct and have
the same number of total elements. The command works with both integer
and floating point arrays in any mixture

See ARRAY SLICE

See ARRAY INSERT

This command does a bit shift on all elements of inarray%() and places the
result in outarray%!() (may be the same as inarray%()). nbr can be between -
63 and 63. Positive numbers are a left shift (multiply by power of 2).
Negative number are a right shift. The optional parameter ,U will force an
unsigned shift.

This command takes the “in” array and scales it between “minout” and
“maxout” returning the answer in “out”. Optionally, it can also return the
minimum and maximum values found in the original data (“minin” and
“minout”).

Note: “minout” can be greater than “maxout” and in this case the data will
be

both scaled and inverted.

e.g

DIM IN(2)=(1,2,3)

DIM OUT(2)

Colour Maximite 2 User Manual Page 102

Matrix arithmetic

MATH M_INVERSE array!(),
inversearray!()

MATH M_PRINT array()
MATH M_TRANSPOSE in(),

out()

MATH M_MULT in1(), in2(),
out()

Vector arithmetic

MATH V_PRINT array()
MATH V_NORMALISE inV(),
outV()

MATH V_MULT matrix(),
inV(), outV()

MATH V_CROSS inV1(),
inV2(), outV()

Quaternion arithmetic

MATH Q_INVERT inQ(),
outQ()

MATH Q VECTORYX, Y, z,
outvQ()

MATH Q_CREATE theta, X, Y,
z, outRQ()

MATH Q_EULER yaw, pitch,
roll, outRQ()

MATH Q_MULT inQ1(),
inQ2(), outQ()

Page 103

MATH WINDOW IN(),7,3,0UT(),LOW,HIGH
Will return OUT(0)=7, OUT(1)=5,0UT(2)=3,LOW=1,HIGH=3 This
command can massively simplify scaling data for plotting etc.

This returns the inverse of array!() in inversearray!(). The array must be
square and you will get an error if the array cannot be inverted
(determinant=0). array!() and inversearray!() cannot be the same.

Quick mechanism to print a 2D matrix one row per line.

Transpose matrix in() and put the answer in matrix out(), both arrays must be
2D but need not be square. If not square then the arrays must be
dimensioned in(m,n) out(n,m)

Multiply the arrays in1() and in2() and put the answer in out()c. All arrays
must be 2D but need not be square. If not square then the arrays must be
dimensioned in1(m,n) in2(p,m) ,out(p,n)

Quick mechanism to print a small array on a single line

Converts a vector inV() to unit scale and puts the answer in outV/()
(sgr(x*x + y*y +.......)=1
There is no limit on number of elements in the vector

Multiplies matrix() and vector inV() returning vector outV(). The vectors
and the 2D matrix can be any size but must have the same cardinality.

Calculates the cross product of two three element vectors inV1() and inV2()
and puts the answer in outV()

Invert the quaternion in inQ() and put the answer in outQ()

Converts a vector specified by x , y, and z to a normalised quaternion vector
outVQ() with the original magnitude stored

Generates a normalised rotation quaternion outRQ() to rotate quaternion
vectors around axis x,y,z by an angle of theta. Theta is specified in radians
but respects the setting of OPTION ANGLE

Generates a normalised rotation quaternion outRQ() to rotate quaternion
vectors as defined by the yaw, pitch and roll angles

With the vector in front of the “viewer” yaw is looking from the top of the
ector and rotates clockwise, pitch rotates the top away from the camera and
roll rotates around the z-axis clockwise.

The yaw, pitch and roll angles default to radians but respect the setting of
OPTION ANGLE

Multiplies two quaternions inQ1() and inQ2() and puts the answer in outQ()

Colour Maximite 2 User Manual Page 103

MATH Q_ROTATE, RQ(),
inVQ(), outVQ()

Rotates the source quaternion vector inVQ() by the rotate quaternion RQ()
and puts the answer in outVQ()

IVIATH AESLZLD

MATH AES128 ENCRYPT
CBC/ECBICTR key$/key(),
in$/in(), out$lout() [iv$/iv()]

MATH AES128 DECRYPT
CBC/ECB/CTR key$/key(),
in$/in(), out$/out()

This command encrypts or decrypts the data in 'in' and puts the answer in
‘out’
using the AES128 encryption method specified.

The parameters can each be either a string, integer array, or float array with
any mix possible.

The key must be 16 elements long (16*8=128bits), in and out must be a
multiple of 16 elements long. In the case of out being specified as a string
(e.g. out$), the string variable must exist and should be set to empty (DIM
out$="")

The maximum number of elements in 'in and 'out' is limited by memory
when defined as arrays. Strings for encrypting are limited to 240bytes (EBR)

and 224bytes (CTR and CBC).
For CBC and CTR encryption you can optionally specify an initialisation

vector 'iv'. 'iv' must be 16 elements long (16*8=128bits). If an initialisation

vector is not specified encryption will generate a random initialisation
vector.

In both cases the output is prepended with the IV.

For CBC and CTR, decryption requires that the first 16 elements of the input
are the initialisation vector. (IV is not a parameter for DECRYPT)

In the case where you want to transmit a message without IV you should
remove the IV before sending the message using standard MMBasic
manipulations. In this case the recipient must know the IV as well as the key

and create a complete message before using DECRYPT by prepending the
v

to the incoming message.

IVIATH FEI

MATH FFT

MATH FFT signalarray!(),
FFTarray!()

MATH FFT INVERSE
FFTarray!(), signalarray!()

MATH FFT MAGNITUDE

Performs a fast fourier transform of the data in “signalarray!”. "signalarray"
must be floating point and the size must be a power of 2 (e.g. s(1023)
assuming OPTION BASE is zero)

"FFTarray" must be floating point and have dimension 2*N where N is the
same as the signal array (e.g. f(1,1023) assuming OPTION BASE is zero)
The command will return the FFT as complex numbers with the real part in
f(0,n) and the imaginary part in f(1,n)

Performs an inverse fast fourier transform of the data in “FFTarray!”.
"FFTarray" must be floating point and have dimension 2*N where N must be
a power of 2 (e.g. f(1,1023) assuming OPTION BASE is zero) with the real
part in f(O,n) and the imaginary part in f(1,n).

"signalarray" must be floating point and the single dimension must be the
same as the FFT array.

The command will return the real part of the inverse transform in
"signalarray".

Generates magnitudes for frequencies for the data in “signalarray!”
"signalarray" must be floating point and the size must be a power of 2 (e.g.

Page 104

Colour Maximite 2 User Manual Page 104

signalarray!(),magnitudearray!()

MATH FFT PHASE
signalarray!(), phasearray!()

$(1023) assuming OPTION BASE is zero)

"magnitudearray" must be floating point and the size must be the same as the
signal array

The command will return the magnitude of the signal at various frequencies
according to the formula:

frequency at array position N = N * sample_frequency / number_of samples
Generates phases for frequencies for the data in “signalarray!”.

"signalarray" must be floating point and the size must be a power of 2 (e.g.
$(1023) assuming OPTION BASE is zero)

"phasearray"” must be floating point and the size must be the same as the
signal array

The command will return the phase angle of the signal at various frequencies
according to the formula above.

IVIATH FID

MATH PID INIT channel,
pid_params!(),callback

MATH PID START channel

MATH PID STOP channel

This command sets up a PID controller that can work automatically in the
background. Up to 8 PID controllers can run simultaneously (channels 1 to
8) ‘callback’ is a MMbasic subroutine which is called at the rate defined by
the sample time. See the MATH(PID ...) function for details of what should
be included in the subroutine.

The pid_params!() array must be dimensioned for all the listed elements,
including the controller memory parameters (DIM pid_params!(13)) and be
initialised with the required settings.

PID configuration

Element 0 = Kp
Element 1 = Ki
Element 2 = Kd

Element 3 = tau ' Derivative low-pass filter time constant

Element 4 = limMin 'Output limits

Element 5 = limMax

Element 6 = limMinlnt 'Integrator limits

Element 7 = limMaxInt

Element 8 = T 'Sample time (in seconds)
Controller "memory"

Element 9 = integrator

Element 10 = prevError

Element 11 = differentiator

Element 12 = prevMeasurement

Element 13 = out

Starts a previously initialised PID controller on the channel specified

Stops a previously initialised PID controller on the channel specified and
deletes the internal data structures

See
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263
For an example of setting up and running a PID controller

Page 105

Colour Maximite 2 User Manual Page 105

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263

IVIATH SENSURFUSTTUN

MATH SENSORFUSION type
ax, ay, az, gx, gy, gz, mx, my,
mz, pitch, roll, yaw [,p1] [,p2]

Type can be MAHONY or MADGWICK

AX, ay, and az are the accelerations in the three directions and should be
specified in units of standard gravitational acceleration.

Gx, gy, and gz are the instantaneous values of rotational speed which should
be specified in radians per second.

Mx, my, and mz are the magnetic fields in the three directions and should be
specified in nano-Tesla (nT)

Care must be taken to ensure that the x, y and z components are consistent
between the three inputs. So , for example, using the MPU-9250 the correct
input will be ax, ay,az, gx, gy, gz, my, mx, -mz based on the reading from
the sensor.

Pitch, roll and yaw should be floating point variables and will contain the
outputs from the sensor fusion.

The SENSORFUSION routine will automatically measure the time between
consecutive calls and will use this in its internal calculations.

The Madwick algorithm takes an optional parameter p1. This is used as beta
in the calculation. It defaults to 0.5 if not specified

The Mahony algorithm takes two optional parameters pl, and p2. These are
used as Kp and Ki in the calculation. If not specified these default to 10.0
and 0.0 respectively.

A fully worked example of using the code is given on the BackShed forum
at:

https://www.thebackshed.com/forum/ViewTopic.php?TID=13459&PID=16
6962#166962

IVIATH SYNU
MATH SINC x_in(), y_in(), n,
m, window, freq, x_out(),y_out()

MATH SINC x_in(), y_in(), n,
window, freq, x_out(), y_out()

Apply a windowed sinc filter to smooth or interpolate coordinate data.

A sinc filter is an ideal low-pass filter that removes high-frequency noise
while preserving the signal shape. It is particularly good for resampling

(interpolation).

Parameters:

x_in(), y_in() Input coordinate arrays (float)

n Number of input points

m Number of output points (optional). If omitted or m=n:

Smoothing mode (output size n). If m!=n:
Interpolation/Resampling mode (output size m)

window Filter kernel size (must be odd; even values are
incremented). Typical values: 15 to 101. Larger values
give a sharper cutoff but are slower.

freq Normalized cutoff frequency (0.0 < freq <= 0.5). 0.5 is
the Nyquist frequency (no filtering). Typical values: 0.1
(heavy smoothing) to 0.4 (light smoothing).

x_out(), y_out() Output coordinate arrays (must be large enough to hold
output)

IVIEIVIURY

MEMORY

List the amount of memory currently in use. For example:
Flash:

39K (6%) Program (1450 lines)

527K (94%) Free

Page 106

Colour Maximite 2 User Manual Page 106

https://www.thebackshed.com/forum/ViewTopic.php?TID=13459&PID=166962%23166962

RAM:
OK (0%) O Variables
1K (O%) General
24799K (100%) Free

Notes:
e General memory is used by serial 1/0 buffers, etc.

e Memory usage is rounded to the nearest 1K byte.

IVIEIVIURY PAUK/UNFAUK

MEMORY PACK source%(),
destination%(),number,size

MEMORY UNPACK
source%(), destination%(),
number,size

Memory pack and unpack allow integer values from one array to be
compressed into another or uncompressed from one to the other.

The two arrays are always normal integer arrays but the packed array can
have 2, 4, 8, 16 or 64 values “packed into them. Thus a single integer array
element could store 2 off 32-bit words, 4 off 16 bit values, 8 bytes, 16
nibbles, or 64 booleans (bits).

“number specifies the number of values to be packed or unpacked and
“size” specifies the number of bits (1,4,8,16,0r 32)

IVIEIVIURY PRINT/INFU |

MEMORY PRINT #]fnbr ,
nbr, address%/array/()

MEMORY INPUT [#]fnbr ,nbr,
address%/array/()

These commands save or read ‘nbr’ of data bytes from or to memory from or
to an open disk file.

The memory to be saved can be specified as an integer array in which case
the nbr of bytes to be saved or read is checked against the array size.
Alternatively, a memory address can be used in which case no checking can
take place and user errors could result in a crash of the firmware..

IVIEIVIURY SE 1

MEMORY SET address, byte,
numberofbytes

MEMORY SET BYTE address,
byte, numberofbytes

MEMORY SET SHORT
address, short, numberofshorts

MEMORY SET WORD address,
word, numberofwords

MEMORY SET INTEGER
address, integervalue
,numberofintegers [,increment]

MEMORY SET FLOAT
address, floatingvalue
,numberofloats [,increment]

This command will set a region of memory to a value.
BYTE = One byte per memory address.

SHORT = Two bytes per memory address.

WORD = Four bytes per memory address.

INTEGER = Four bytes per memory address.
FLOAT = Four bytes per memory address.

‘increment’ is optional and controls the increment of the ‘address’ pointer as
the operation is executed. For example, if increment=3 then only every third
element of the target is set. The default is 1.

IVIEIVIURY CUPY

MEMORY COPY
sourceaddress, destinationaddres,
numberofbytes

MEMORY COPY INTEGER
sourceaddress,
destinationaddress,
numberofintegers
[,sourceincrement][,destinationin

This command will copy one region of memory to another.

COPY INTEGER and FLOAT will copy four bytes per operation.
‘sourceincrement’ is optional and controls the increment of the
‘sourceaddress’ pointer as the operation is executed. For example, if
sourceincrement=3 then only every third element of the source will be
copied. The default is 1.

‘destinationincrement’ is similar and operates on the ‘destinationaddress’
pointer.

Page 107

Colour Maximite 2 User Manual Page 107

crement]

MEMORY COPY FLOAT
sourceaddress,
destinationaddress,
numberoffloats
[,sourceincrement][,destinationin
crement]

VDD

MID$(str$, start [, num]) = str2$

The characters in 'str$', beginning at position 'start’, are replaced by the
characters in 'str2$'. The optional 'num’ refers to the number of characters in
str$ to be replaced. If str2$ is shorter or longer than the selected range then
the length of str$ is adjusted to accommodate the replacement string. If num
is omitted then the number of characters replaced defaults to the length of
str2$. See LMID command for longstrings.

IVIKVIK

MKDIR dir$

Make, or create, the directory ‘dir$’ on the SD card.

MMDEBUG [BREAK]
MMDEBUG
MMDEBUG BREAK

By default the MMDEBUG command acts exactly like the PRINT command
S0 you can use it liberally throughout your program during development and
know that by simply setting #MMDEBUG OFF or removing any
#MMDEBUG directives, your program will run normally without any
impact on performance.

The second form of the MMDEBUG command is MMDEBUG BREAK.
in this case you get a command promptDEBUG>

Here you can execute any normal MMBASIC commands as though you
were at the normal command prompt allowing you to change any variables,
print them, or execute any other user subroutines or built in commands.
These should be commands that make sense at the command line (e.g. do not
use GOTO).

To exit this mode use the command CONTINUE

vivve

MODE r, bits [, bg [, int]]

Set the format for the VGA video output. 'r' is the screen resolution.
It is a number from 1 to 18 as follows:

1 =800 x 600 pixels

2 = 640 x 400 pixels

3 =320 x 200 pixels

4 = 480 x 432 pixels

5 = 240 x 216 pixels

6 = 256 x 240 pixels

7 = 320 x 240 pixels

8 = 640 x 480 pixels

9 = 1024 x 768 pixels (12-bit mode not available)

10 = 848 x 480 pixels (widescreen format)

11 = 1280 x 720 pixels (widescreen format)

12 =960 x 540 pixels (widescreen format, lines duplicated)

13 = 400 x 300 pixels

14 = 960 x 540 pixels (widescreen format, lines not duplicated — not
supported by all monitors

15 = 1280x1024

16 = 1920x1080 (widescreen format, G2 only)
17 = 1384 x 240 pixels

18 = 1024 x 600 pixels

Page 108

Colour Maximite 2 User Manual Page 108

All resolutions except 10, 11, 12, 14, and 16 work perfectly with monitors
that have an aspect ratio of 4:3 or widescreen monitors that can switch to
that ratio (most widescreen monitors will do this automatically).

‘bits' is the colour depth and can be 8, 12, 16 or 32 (G2 only) — see the table

below.

‘bg’ is the background colour and can be used in the 12-bit mode. If pixels in
layer O are not set to solid (transparency = 15) then the background will
show through as determined by the transparency value of the pixel. This
parameter is ignored in 8 and 16-bit modes.

‘int” is a subroutine that will be called at the start of frame blanking.
The specifications of the colour depth (“bits") are:

32-bit(G2) 16-bit 12-bit 8-bit
H/W Pixel ARGB8888 | RGB565 | ARGB4444 RGB332
Format
Nbr Bits/Pixel | 32(4 bytes) 16 (2 16 (2 bytes) | 8 (1 byte)
bytes)
Colours 4,294,967,296 | 65536 4096 256
Transparency None None 16-levels None
Pages Used 1 1 2 1
Layers 1 1 2+ 1
background
The pages available in the various modes are:
Mode | 32-bit(G2) | 16-bit:G1/G2 | 12-bit:G1/G2 | 8-bit:G1/G2
1 Oto2 Oto2/0to 6 Oto2/0to 6 0 to 6/0 to 15
2 Oto6 0to 6/0to 14 Oto6/0to 14 | Oto 13/0to 29
3 0 to 27 0to 25/0to 57 | 0to24/0to56 | 0 to53/0to 60
4 Oto7 Oto70to 17 Oto7/0to 17 | 0to 15/0to 35
5 0to 33 0 to 30/0 to 60 | O to 29/0 to 60 0to 60
6 0to 28 0to 26/0-60 | Oto25/0to59 | 0 to53/0to 60
7 0to20 0to19/0to46 | Oto 18/0to45 | 0to41/0to 60
8 Oto4 0to4/0to 10 O0to4/0to 10 | 0to 10/0to 23
9 N/A Oand 1/0to 3 N/A O0to3/0to 8
10 Oto3 Oto2/0to 7 Oto2/0to 7 Oto7/0to 17
11 N/A 0/0to 2 N/A Oto2/0to 6
12 N/A 0/0to 4 N/A Oto3/0to 11
13 Oto12 O0to11/0to 28 | Oto 10/0to 27 | O to 26/0 to 60
14 Oto2 Oto2/0to 6 Oto2/0to 6 0 to 6/0 to 14
15 N/A N/A N/A Otol/0to 4
16 N/A N/A N/A N/A, 0to 2
17 Oto 16 0to 15/0to 38 | Oto 14/0to 37 | O to 34/0to 60
18 ? ? ? ?

Page 109

Colour Maximite 2 User Manual

Page 109

The display always shows the contents of page 0 (32-bit, 16-bit and 8-bit)
and pages 0 and 1 (12-bit) unless overridden with the PAGE DISPLAY
command. Use PAGE WRITE and PAGE COPY to avoid artefacts of
flashing and tearing. For 12-bit colour depth page 0 is the lower level and
page 1 the upper so the stack is: background, page 0, page 1 with each one
overwriting the previous in turn as defined by the transparency values of
each individual pixel.

MM.INFO(MAX PAGES) and MM.INFO(PAGE ADDRESS n) are useful
if you wish to PEEK or POKE the video memory. In all cases the memory is
arranged as a two dimensional array X,y so, to get the address of a specific
pixel on a specific page n.

Notes:

e With an 8-bit colour depth you would use:
add% =MM.INFO(page address n)+ y* mm.hres +x

e For 12 or 16-bit colour depth you would use
add% =MM.INFO(page address n)+ (y* mm.hres +x) * 2

For modes 3,5, 6, 7, 12, and 13 each line in page 0 is duplicated to get
square pixels so Y needs to be multiplied by 2 for PEEK and both lines y*2
and Y*2+1 need to be POKEd. e.g, for an 8-bit colour depth:
add1% = MM.INFO(page address n)+ (y * 2) * MM.HRES + x
add2% = MM.INFO(page address n)+ (y * 2 + 1) * MM.HRES + x

NB: this duplication will also apply to page 1 in 12-bit colour modes.

For the 12 and 16-bit modes you can use POKE SHORT and
PEEK(SHORT) which are designed for this purpose.

The monitor will see the following resolutions:

Modes 1, 13 800 x 600 @ 60 Hz
Modes 2, 3, 4,5, 6,7, 8, 17 640 x 480 @ 75Hz
Mode 9 1024 x 768 @ 60Hz
Mode 10 848 x 480 @ 60 Hz
Mode 11 1280 x 720 @ 60 Hz
Mode 15 1280 x 1024 @ 60 Hz
Mode 14 1920 x 540 @ 60 Hz
Mode 12, 16 1920 x 1080 @ 60 Hz

NEVV

NEW

Deletes the program in program memory, clears all variables including saved
variables and resets the interpreter (ie, closes files, serial ports, etc).

NEA |
NEXT [counter-variable] [,
counter-variable], etc

NEXT comes at the end of a FOR-NEXT loop; see FOR.

The “counter-variable’ specifies exactly which loop is being operated on. If
no ‘counter-variable’ is specified the NEXT will default to the innermost
loop. Itis also possible to specify multiple variables as in: NEXT x,y, z

UN ERRUK

ON ERROR ABORT
or

ON ERROR IGNORE
or

ON ERROR SKIP [nn]
or

ON ERROR CLEAR

This controls the action taken if an error occurs while running a program and
applies to all errors discovered by MMBasic including syntax errors, wrong
data, missing hardware, SD Card access, etc.

ON ERROR ABORT will cause MMBasic to display an error message, abort
the program and return to the command prompt. This is the normal behaviour
and is the default when a program starts running.

ON ERROR IGNORE will cause any error to be ignored.

ON ERROR SKIP will ignore an error in a number of commands (specified by
the number 'nn") executed following this command. 'nn'is optional, the default

Page 110

Colour Maximite 2 User Manual Page 110

if not specified is one. After the number of commands has completed (with an
error or not) the behaviour of MMBasic will revert to ON ERROR ABORT.

If an error occurs and is ignored/skipped the read only variable MM.ERRNO
will be set to non zero and MM.ERRMSG$ will be set to the error message
that would normally be generated. These are reset to zero and an empty string
by ON ERROR CLEAR. They are also cleared when the program is run and
when ON ERROR IGNORE and ON ERROR SKIP are used.

ON ERROR IGNORE can make it very difficult to debug a program so it is
strongly recommended that only ON ERROR SKIP be used.

UN KEY

ON KEY target
or
ON KEY ASCllIcode, target

The first version of the command sets an interrupt which will call 'target'
user defined subroutine whenever there is one or more characters waiting in
the serial console input buffer.

Note that all characters waiting in the input buffer should be read in the
interrupt subroutine otherwise another interrupt will be automatically
generated as soon as the program returns from the interrupt.

The second version allows you to associate an interrupt routine with a
specific key press. This operates at a low level for both the USB keyboard
and a serial console and if activated the key does not get put into the input
buffer but merely triggers the interrupt. It uses a separate interrupt from the
simple ON KEY command so can be used at the same time if required.

In both variants, to disable the interrupt use numeric zero for the target, i.e.:
ON KEY 0. or ON KEY ASCllIcode, 0

UNEWIRE

ONEWIRE RESET pin
or

ONEWIRE WRITE pin, flag,
length, data [, data...]

or

ONEWIRE READ pin, flag,
length, data [, data...]

Commands for communicating with 1-Wire devices.
ONEWIRE RESET will reset the 1-Wire bus
ONEWIRE WRITE will send a number of bytes
ONEWIRE READ will read a number of bytes

'pin' is the I/O pin (located in the rear connector) to use. It can be any pin
capable of digital 1/0.

'flag' is a combination of the following options:
1 - Send reset before command
2 - Send reset after command
4 - Only send/recv a bit instead of a byte of data

8 - Invoke a strong pullup after the command (the pin will be set
high and open drain disabled)

'length’ is the length of data to send or receive

'data’ is the data to send or variable to receive. The number of data items
must agree with the length parameter.

See also Appendix C.

UFEN

OPEN fname$ FOR mode AS
[#]fnbr

Opens a file for reading or writing.

‘fname’ is the filename with an optional extension separated by a dot (.).
Long file names with upper and lower case characters are supported.

A directory path can be specified with the forward or backwards slash as a
directory separator. The parent of the current directory can be specified by
using a directory name of .. (two dots) and the current directory with . (a
single dot).

For example OPEN "../dir1/dir2/filename.txt" FOR INPUT AS #1

‘mode’ is INPUT, OUTPUT, APPEND or RANDOM.

INPUT will open the file for reading and throw an error if the file does not
exist. OUTPUT will open the file for writing and will automatically
overwrite any existing file with the same name.

Page 111

Colour Maximite 2 User Manual Page 111

APPEND will also open the file for writing but it will not overwrite an
existing file; instead any writes will be appended to the end of the file. If
there is no existing file the APPEND mode will act the same as the
OUTPUT mode (i.e. the file is created then opened for writing).

RANDOM will open the file for both read and write and will allow random
access using the SEEK command. When opened the read/write pointer is
positioned at the end of the file.

“fnbr’ is the file number (1 to 10). The # is optional. Up to 10 files can be
open simultaneously. The INPUT, LINE INPUT, PRINT, WRITE and
CLOSE commands as well as the EOF() and INPUT$() functions all use
“fnbr’ to identify the file being operated on.

See also ON ERROR and MM.ERRNO for error handling.

OPEN comspec$ AS [#]fnbr

Will open a serial communications port for reading and writing. Two ports
are available (COM1: and COM2:) and both can be open simultaneously. If
OPTION CONSOLE SCREEN is used then the console serial port is
available as COM3..

Using ‘fnbr’ the port can be written to and read from using any command or
function that uses a file number. ‘comspec$’ is the communication
specification and is a string (it can be a string variable) specifying the serial
port to be opened and optional parameters. The default is 9600 baud, 8 data
bits, no parity and one stop bit.

It has the form "COMn: baud, buf, int, int-trigger, (DEN or
DEP), 7BIT, (ODD or EVEN), INV, OC, S2"

Where:

e ‘n’ is the serial port number for either COM1:, COM2 or COM3....

e ‘baud’ is the baud rate. This can be any value between 1200 (the
minimum) and 1000000 (1MHz). Default is 9600.

e ‘buf’ is the receive buffer size in bytes (default size is 256). The
transmit buffer is fixed at 256 bytes.

e ‘int’ is a user defined subroutine which will be called when the serial
port has received some data. The default is no interrupt.

e ‘int-trigger’ sets the trigger condition for calling the interrupt
subroutine. If it is a normal number the interrupt subroutine will be
called when this number of characters has arrived in the receive
queue.

All parameters except the serial port name (COMn:) are optional. If any one
parameter is left out then all the following parameters must also be left out
and the defaults will be used.

These options can be added to the end of ‘comspec$'
o 'INV' specifies that the transmit and receive polarity is inverted.

‘OC’ will force the transmit pin (and DE on COM1:) to be open
collector. The default is normal (0 to 3.3V) output.

e 'S2' specifies that two stop bits will be sent following each character
transmitted.

o '7BIT" will specify that 7 bit transmit and receive is to be used.

e ‘ODD’ will specify that an odd parity bit will be appended (8 bits will
be transmitted if 7BIT is specified, otherwise 9)

o ‘EVEN’ will specify that an even parity bit will be appended (8 bits
will be transmitted if 7BIT is specified, otherwise 9)

e 'DEP' will enable RS485 mode with positive output on COM1-DE
e 'DEN' will enable RS485 mode with negative output on COM1-DE

Page 112

Colour Maximite 2 User Manual Page 112

OPEN comspec$ AS GPS
[timezone_offset] [,monitor]

Will open a serial communications port for reading from a GPS receiver. See
the GPS function for details. The sentences interpreted are GPRMC,
GNRMC, GPCGA and GNCGA.

The timezone_offset parameter is used to convert UTC as received from the
GPS to the local timezone. If omitted the timezone will default to UTC. The
timezone_offset can be a any number between -12 and 14 allowing the time to
be set correctly even for the Chatham Islands in New Zealand (UTC +12:45).

If the monitor parameter is set to 1 then all GPS input is directed to the
console. This can be stopped by closing the GPS channel.

UFTIUN

OPTION

See the section Options earlier in this manual.

FALLE

PAGE COPY n TO m [,when]
L]

Copy the contents of one video page to another.

n' is the source and 'm' is the destination. 'when' can be one of letters I, B, or
D. If omitted it will default to .

I means do the copy immediately. It is the most efficient but risks
causing screen artefacts

B means wait until the next frame blanking and then do the copy. Itis
the least efficient but is absolutely determinate in its effect and no
screen artefacts will ever be seen.

D means carry on processing the next command and do the copy in the
background when the next frame blanking occurs. This is efficient
but must be used with care as subsequent drawing commands may or
may not be included in the copy depending on the timing of the next
screen blanking.

If the optional field *, t” is used then only non-black pixels are copied.

PAGE DISPLAY n [,page]

PAGE DISPLAY -1

Allow the user the ability to select which page(s) are displayed on the screen
(does not impact the current write page). Normal example of use is:

PAGE DISPLAY 3
This will display the current contents of page 3.
In 12 bit mode you can also use:
PAGE DISPAY 4,1
This sets the page that is to be displayed as the top layer

This command executes in the next screen blanking period. When a program
ends for any reason the normal display page O is restored. Note for modes 3
or5or6or7or12or13you can only select pages 0 or 1 for display in 8 or
16 bit colour and pages 0, 1, or 2 in 12-bit colour

Turns off the display. To turn it back on select a valid display page. This
command is only valid in a program.

PAGE RESIZE pageno, w, h

This command changes the width and height of a given page in memory. ‘w’
can be set between 1 and the normal width for the current display mode. ‘h’
can be set between 1 and the normal height of the display mode. When
PAGE WRITE is set to a resized page all graphics commands will respect
the new values of width and height, including print output scrolling, and
MM.HRES and MM.VRES will report the revised size.

Page 113

Colour Maximite 2 User Manual Page 113

PAGE SCROLL pageno, x, y
[fillcolour]

Will scroll the image on the page specified by '‘pageno’ by the amount
defined by 'X' pixels to the right and 'y' pixels up. By default the area scrolled
off the screen appears on the other side.

If "fillcolour' is specified it will replace the area left behind by the scroll with
the colour specified. If 'fillcolour' is set to -1 then the area left behind by the
scroll is left untouched. This is the most efficient version and is suitable if
there is a black background.

PAGE STITCH frompagel,
from_page_2, topage, offset

Will take the last horizontal resolution minus ‘offset' columns from
‘frompagel' and the first 'offset' columns from ‘frompage2' and copies them
to 'topage’

PAGE AND_PIXELS
sourcepagel, sourcepage2,
destinationpage

PAGE OR_PIXELS
sourcepagel, sourcepage2,
destinationpage

PAGE XOR_PIXELS
sourcepagel, sourcepage2,
destinationpage

These commands combine the pixels on sourcepagel and sourcepage2 by
ANDing, ORing, or XORing them. destinationpage can be the same as either
of the sourcepages if required.

PAGE WRITE n Instructs MMBasic to make all graphics commands write to page 'n'. If not
used page 0 is the default. Set the page to FRAMEBUFFER to write to the
framebuffer — see the FRAMEBUFFER command.

FPAUSE . . .

PAUSE delay Halt execution of the running program for ‘delay’ ms. This can be a

fraction. For example, 0.2 is equal to 200 us. The maximum delay is
2147483647 ms (about 24 days).

Note that interrupts will be recognised and processed during a pause.

FIN

PIN (pin) = value

For a “‘pin’ configured as digital output this will set the output to low
(“value’ is zero) or high (‘value’ non-zero). You can set an output high or
low before it is configured as an output and that setting will be the default
output when the SETPIN command takes effect. See the function PIN() for
reading from a pin and the command SETPIN for configuring it.

FIAEL |FILL]

PIXEL x, y [,c]

Set a pixel on an attached VGA monitor to a colour.

'X" is the horizontal coordinate and 'y" is the vertical coordinate of the pixel.
'c" is a 24 bit number specifying the colour.

'c" is optional and if omitted the current foreground colour will be used.

All parameters can be expressed as arrays and the software will plot the
number of pixels as determined by the dimensions of the smallest array. 'x' and
'y must both be arrays or both be single variables /constants otherwise an error
will be generated. 'c' can be either an arrays or a single variable or constant.

See the chapter "Basic Drawing Commands" for a definition of the colours
and graphics coordinates.

PIXEL FILL X, Yy, C

Implements a flood fill by reading the colour of the pixel at coordinates X,y
and replacing it and the entire area of connected pixels having the same
colour with the new colour “c”.

Page 114

Colour Maximite 2 User Manual Page 114

PLAY
PLAY EFFECT file$ [,interrupt]

This will play the WAV file * file$' at the same time as a MOD file is
playing. If a previous EFFECT file is playing this command will
immediately terminate it and commence playing the new file.

The file is played in the background, 'interrupt' is optional and is the name of
a subroutine that will be called when the file has finished playing.

Note: wav files played using PLAY EFFECT during mod file playback must
have the same sample rate as the modfile output. Files can be mono or
stereo.

PLAY TONE left, right [, dur
[, interrupt]]

Generates two separate sine waves on the sound output left and right
channels. The tone plays in the background (the program will continue
running after this command).

"left' and 'right' are the frequencies in Hz to use for the left and right channels.

'dur' specifies the number of milliseconds that the tone will sound for.
MMBasic will round the time to the next nearest complete waveform of the
first frequency specified so that the tone will always finish with the DC level
in the middle and no discontinuity. If the duration is not specified the tone
will continue until explicitly stopped or the program terminates.

"interrupt’ is optional and is an interrupt subroutine to call when the tone has
completed.

The frequency can be from 1Hz to 20KHz and is very accurate (it is based
on a crystal oscillator). The frequency can be changed at any time by issuing
anew PLAY TONE command.

PLAY WAV file$ [, interrupt]
or

PLAY FLAC file$ [, interrupt]
or

PLAY MP3 file$ [, interrupt]

Play an audio file on the audio (DAC) output.
file$' is the file to play (the appropriate extension will be appended if
missing). The file is played in the background, 'interrupt' is optional and is
the name of a subroutine that will be called when the file has finished
playing.
For WAV files MMBasic will automatically compensate for the frequency,
number of bits and number of channels of the WAV file.
For FLAC files the supported frequencies are:

44100Hz 16-bit(CD quality) and 24-bit

48000Hz 16-bit and 24-bit

88200Hz 16-bit and 24-bit

96000Hz 24-bit
Maximums for FLAC and WAV file playback are 96KHz 24-bit. Both will
auto-configure to the file provided. As an indication, 96KHz 24-bit FLAC
uses just over 50% of the CPU's resources.
If “file$’ is a directory then the firmware will list all the files of the relevant
type in that directory and start playing them one-by-one. To play files in the
current directory use an empty string (ie, ""). Each file listed will play in
turn and the optional interrupt will fire when all files have been played. The
filenames are stored with full path so you can use CHDIR while tracks are
playing without causing problems.

All files in the directory are listed if the command is executed at the
command prompt but the listing is suppressed in a program

PLAY MODFILE file$
[,samplerate]

Will play a MOD file on the DAC outputs.

file$' is the MOD file to play (the extension of .mod will be appended if
missing). The MOD file is played in the background and will run
continuously until PLAY STOP is called.

The MOD encoder supports 32 channels, 16-bit resolution (but the DACs are
only 12 bit), 32 samples, no fixed maximum size.

Page 115

Colour Maximite 2 User Manual Page 115

The optional parameter samplerate specifies the number of samples per
second generated by the modfile engine. The default is 44100. Processor
overhead is reduced by decreasing this. Valid values are 8000, 16000,
22050, 44100, 48000

Note: wav files played using PLAY EFFECT during modfile playback must
have the same sample rate as the modfile output.

PLAY MODSAMPLE
sampleno, channelno [,volume]
[,samplerate]

Plays one of the samples in the MOD file concurrently with the main MOD
file playback. This allows sound effects to be incorporated in the MOD file.
“sampleno” can be in the range 1 to 32.

Up to 4 samples can be played simultaneously on independent channels
using the specified “channelno” which must be in the range 1 to 4.

The optional “volume” should be set in the range 0 to 64 (default 64).

The optional “samplerate” specifies the update rate for the sample. The
default is 16000. Changing this will change the pitch of the sample and the
duration of playback and it should be set to the sample's original rate for
playback as recorded.

PLAY SOUND soundno,
channelno, type [,frequency]
[,volume]

Play a series of sounds simultaneously on the audio output.

'soundno’ is the sound number and can be from 1 to 4 allowing for four
simultaneous sounds on each channel. 'channelno’ specifies the output
channel. It can be L (left speaker), R (right speaker) or B (both speakers)

'type' is the type of waveform. It can be S (sine wave), Q (square wave), T
(triangle wave), W (rising sawtooth), N (noise), P (periodic noise) or O (turn
off sound). Type N is true white noise. In this case the frequency parameter
specifies the number of periods of 1/70000 seconds that the output stays at a
particular random value. Type P is periodic white noise. In this case the
frequency is some sort of relationship to the periodic frequency of the noise

'frequency’ is the frequency from 1 to 20000 (Hz) and it must be specified
except when type is O.

‘'volume' is optional and must be between 1 and 25. It defaults to 25

The first time PLAY SOUND is called all other audio usage will be blocked
and will remain blocked until PLAY STOP is called. Output can be stopped
temporarily using PLAY PAUSE and PLAY RESUME.

Calling SOUND on an already running 'soundno’ will immediately replace
the previous output. Individual sounds are turned off using type “O”

Running 4 sounds simultaneously on both channels of the audio output
consumes about 23% of the CPU.

PLAY PAUSE PLAY PAUSE will temporarily halt the currently playing file or tone.

PLAY RESUME PLAY RESUME will resume playing a sound that was paused.

PLAY STOP PLAY STOP will terminate the playing of the file or tone. When the
program terminates for whatever reason the sound output will also be
automatically stopped.

PLAY NEXT When playing a sequence of audio tracks (by using PLAY MP3 on a

PLAY PREVIOUS

directory holding multiple MP3 files) these commands can be used to skip
forward or back a file. The commands PLAY PAUSE, RESUME, VOLUME
can also be used.

PLAY TTS [PHONETIC] "text"
[,speed] [,pitch] [,mouth]
[throat] [, interrupt]

Outputs text as speech on the DAC outputs. See
http://www.retrobits.net/atari/sam.shtml for details of parameter usage.

The command is non-blocking and the speech is played in the background.
"interrupt’ is optional and is the name of a subroutine which will be called
when the speech has finished playing.

Page 116

Colour Maximite 2 User Manual Page 116

http://www.retrobits.net/atari/sam.shtml

PLAY VOLUME left, right

Will adjust the volume of the audio output.

'left' and 'right" are the levels to use for the left and right channels and can be
between 0 and 100 with 100 being the maximum volume. There is a linear
relationship between the specified level and the output. The volume defaults
to maximum when a program is run.

FPURKE

POKE BYTE addr%, byte

or

POKE SHORT addr%, short%
or

POKE WORD addr%, word%
or

POKE INTEGER addr%, int%
or

POKE FLOAT addr%, float!
or

POKE VAR var, offset, byte
or

POKE VARTBL, offset, byte

Will set a byte or a word within the CPU’s virtual memory space.

POKE BYTE will set the byte (ie, 8 bits) at the memory location 'addr%' to
'byte’. 'addr%' should be an integer.

POKE SHORT will set the short integer (ie, 16 bits) at the memory location
‘addr%' to 'word%'. 'addr%' and short%' should be integers.

POKE WORD will set the word (ie, 32 bits) at the memory location 'addr%'
to 'word%'. ‘addr%' and 'word%' should be integers.

POKE INTEGER will set the MMBasic integer (ie, 64 bits) at the memory
location 'addr%' to int%'. 'addr%' and int%' should be integers.

POKE FLOAT will set the word (ie, 64 bits) at the memory location ‘addr%'
to 'float!". 'addr%' should be an integer and ‘float!" a floating point number.

POKE VAR will set a byte in the memory address of 'var'. 'offset' is the
+offset from the address of the variable. An array is specified as var().

POKE VARTBL will set a byte in MMBasic's variable table. 'offset' is the
+offset from the start of the variable table. Note that a comma is required
after the keyword VARTBL.

FPULYGUN

POLYGON n, xarray%!(),
yarray%o() [, bordercolour] |,
fillcolour]

POLYGON n(), xarray%(),
yarray%() [, bordercolour()] [,
fillcolour()]

POLYGON n(), xarray%!(),
yarray%() [, bordercolour] [,
fillcolour]

Draws a filled or outline polygon with n xy-coordinate pairs in xarray%!()
and yarray%(). If “fillcolour’ is omitted then just the polygon outline is
drawn. If ‘bordercolour’ is omitted then it will default to the current default
foreground colour.

If the last xy-coordinate pair is not the same as the first the firmware will
automatically create an additional xy-coordinate pair to complete the
polygon. The size of the arrays should be at least as big as the number of x,y
coordinate pairs.

'n' can be an array and the colours can also optionally be arrays as follows:
POLYGON n(), xarray%(), yarray%!() [, bordercolour()] [, fillcolour()]
POLYGON n(), xarray%(), yarray%() [, bordercolour] [, fillcolour]

The elements of array n() define the number of xy-coordinate pairs in each
of the polygons. e.g DIM n(1)=(3,3) would define that 2 polygons are to be
drawn with three vertices each. The size of the n array determines the
number of polygons that will be drawn unless an element is found with the
value zero in which case the firmware only processes polygons up to that
point. The X,y-coordinate pairs for all the polygons are stored in xarray%()
and yarray%(). The xarray%() and yarray%() parameters must have at least
as many elements as the total of the values in the n array.

Each polygon can be closed with the first and last elements the same. If the
last element is not the same as the first the firmware will automatically
create an additional x,y-coordinate pair to complete the polygon. If fill
colour is omitted then just the polygon outlines are drawn.

The colour parameters can be a single value in which case all polygons are
drawn in the same colour or they can be arrays with the same cardinality as
n. In this case each polygon drawn can have a different colour of both border
and/or fill. For example, this will draw 3 triangles in yellow, green and red:

DIM c%(2)=(3,3,3)

DIM x%(8)=(100,50,150,100,50,150,100,50,150)

DIM y%(8)=(50,100,100,150,200,200,250,300,300)

DIM fc%(2)=(rgb(yellow), rgb(green),rgb(red))

POLYGON c%(Q),x%Q),y%(,fch(),Fcu()

Page 117

Colour Maximite 2 User Manual Page 117

PUKI
PORT((start, nbr [,start, nbr]...) =
value

Set a number of 1/0O pins simultaneously (ie, with one command).

'start' is an 1/O pin number and the lowest bit in 'value' (bit 0) will be used to
set that pin. Bit 1 will be used to set the pin 'start' plus 1, bit 2 will set pin
'start'+2 and so on for 'nbr' number of bits. 1/0O pins used must be numbered
consecutively and any 1/O pin that is invalid or not configured as an output
will cause an error. The start/nbr pair can be repeated if an additional group
of output pins needed to be added.

For example; PORT(15, 4, 23, 4) = &B10000011

Will set eight I/O pins. Pins 15 and 16 will be set high while 17, 18, 23, 24
and 25 will be set to a low and finally 26 will be set high.

This command can be used to conveniently communicate with parallel
devices like LCD displays. Any number of I/O pins (and therefore bits) can
be used from 1 to the number of 1/O pins on the chip.

See the PORT function to simultaneously read from a number of pins.

FPRINI
PRINT expression
[[.; Jexpression] ... etc

Outputs text to the console (either the VGA screen or the serial or both if
they are available). Multiple expressions can be used and must be separated
by either a:

e Comma (,) which will output the tab character

e Semicolon (;) which will not output anything (it is just used to separate
expressions).

¢ Nothing or a space which will act the same as a semicolon.

A semicolon (;) at the end of the expression list will suppress the automatic
output of a carriage return/ newline at the end of a print statement.

When printed, a number is preceded with a space if positive or a minus (-) if
negative but is not followed by a space. Integers (whole numbers) are
printed without a decimal point while fractions are printed with the decimal
point and the significant decimal digits. Large floating point numbers
(greater than six digits) are printed in scientific number format.

The function TAB() can be used to space to a certain column and the string
functions can be used to justify or otherwise format strings.

PRINT #nbr, expression
[[.; Jexpression] ... etc

Same as the normal PRINT command except that the output is directed to a
file previously opened for OUTPUT or APPEND as “‘#fnbr’ or to a serial
communications port previously opened as ‘nbr’. See the OPEN command.

#0 can be used which refers to the console.

PRINT #GPS, string$

Outputs a NMEA string to an opened GPS device. The string must start with
a $ character and end with a * character. The checksum is calculated
automatically by the firmware and is appended to the string together with the
carriage return and line feed characters.

Page 118

Colour Maximite 2 User Manual Page 118

PRINT @(x [, y]) expression
Or

PRINT @(x, [y], m) expression

Same as the standard PRINT command except that the cursor is positioned at
the coordinates X, y expressed in pixels. If y is omitted the cursor will be
positioned at “X” on the current line.

Example: PRINT @(150, 45) "Hello World"

The @ function can be used anywhere in a print command.

Example: PRINT @(150, 45) "Hello" @(150, 55) "World"

The @(x,y) function can be used to position the cursor anywhere on or off
the screen. For example, PRINT @(-10, 0) "Hello" will only show "llo" as
the first two characters could not be shown because they were off the screen.

The @(x,y) function will automatically suppress the automatic line wrap
normally performed when the cursor goes beyond the right screen margin.

If 'm' is specified the mode of the video operation will be as follows:
m =0 Normal text (white letters, black background)
m =1 The background will not be drawn (ie, transparent)
m =2 The video will be inverted (black letters, white background)
m =5 Current pixels will be inverted (transparent background)

FPULSE

PULSE pin, width

Will generate a pulse on 'pin’ with duration of ‘width' ms. ‘width' can be a
fraction. For example, 0.01 is equal to 10us and this enables the generation
of very narrow pulses.

The generated pulse is of the opposite polarity to the state of the 1/0 pin
when the command is executed. For example, if the output is set high the
PULSE command will generate a negative going pulse.

Notes:
¢ 'pin' must be configured as an output.
e For a pulse of less than 3ms the accuracy is = 1 ps.
e For a pulse of 3ms or more the accuracy is + 0.5 ms.

o A pulse of 3ms or more will run in the background. Up to five different
and concurrent pulses can be running in the background and each can
have its time changed by issuing a new PULSE command or it can be
terminated by issuing a PULSE command with zero for ‘width'.

PVVivi

PWM 1, [-]freq, 1A

or

PWM 1, [-]freq, 1A, 1B
or

PWM 1, [-]freq, 1A, 1B, 1C
or

PWM 2, [-]freq, 2A

or

PWM 2, [-]freq, 2A, 2B
or

PWM channel, STOP
Center 7?77?

Generate a pulse width modulated (PWM) output for driving analog circuits,
sound output, etc.

There are a total of five outputs designated as PWM in the diagrams on
pages 6 and 7 (they are also used for the SERVO command). Controller 1
can have one, two or three outputs while controller 2 can have one or two
outputs. Both controllers are independent and can be turned on and off and
have different frequencies.

'1' or '2" is the controller number and ‘freq’ is the output frequency . 1A, 1B
and 1C are the duty cycle for each of the controller 1 outputs while 2A and
2B are the duty cycle for the controller 2 outputs. The specified 1/O pins
will be automatically configured as outputs while any others will be
unaffected and can be used for other duties.

If the frequency is given as a -ve number then the relevant 1/O pins are
configured as open collector OC (actually open drain OD). This means they
are not driven high, but must have an external pullup which can be to 5v if
required.

The duty cycle for each output is independent of the others and is specified
as a percentage. If it is close to zero the output will be a narrow positive
pulse, if 50 a square wave will be generated and if close to 100 it will be a
very wide positive pulse.

Minimum frequency is 1Hz, maximum is 24MHz. Duty cycle and frequency

Page 119

Colour Maximite 2 User Manual Page 119

accuracy will depend on frequency. The frequency can be any value of
240,000,000/n. The output will run continuously in the background while
the program is running and can be stopped using the STOP command. The
frequency and duty cycle can be changed at any time (without stopping the
output) by issuing a new PWM command.

The PWM function will take control of any specified outputs and when
stopped the pins will be returned to a high impedance "not configured" state.

RBUA

RBOX x, y, w, h [,] [c]
[fill]

Draws a box with rounded corners on the VGA monitor starting at 'x' and 'y’
which is 'w' pixels wide and 'h' pixels high.
'r" is the radius of the corners of the box. It defaults to 10.

'c' specifies the colour and defaults to the default foreground colour if not
specified.

fill" is the fill colour. It can be omitted or set to -1 in which case the box will
not be filled.

All parameters can now be expressed as arrays and the software will plot the
number of boxes as determined by the dimensions of the smallest array. X,
v, 'w', and 'h" must all be arrays or all be single variables /constants
otherwise an error will be generated. 'r', ‘¢, and 'fill' can be either arrays or

single variables/constants.

See the chapter "Basic Drawing Commands" for a definition of the colours
and graphics coordinates.

READ

READ variable[, variable]...

Reads values from DATA statements and assigns these values to the named
variables. Variable types in a READ statement must match the data types in
DATA statements as they are read.

Arrays can be used as variables (specified with empty brackets, eg, a()) and

in that case the size of the array is used to determine how many elements are
to be read. If the array is multidimensional then the leftmost dimension will
be the fastest moving.

See also DATA and RESTORE.

READ SAVE|RES lURE

READ SAVE
or
READ RESTORE

READ SAVE will save the virtual pointer used by the READ command to

point to the next DATA to be read. READ RESTORE will restore the
pointer that was previously saved.

This enables subroutines to READ data and then restore the read pointer so
as not to disturb other parts of the program that may be reading the same
data statements. These commands can be nested to a level of 50.

REDIIVI

REDIM [PRESERVE]
arrayl(dimensions) [,
array2(dimensions]...[,arrayn(
dimensions]

This resizes the array(s) specified with the dimensions given.

If the optional sub-command PRESERVE is specified the existing data will
be copied into the new array.

The new array can be bigger or smaller than the original.

In the case of string arrays, the original LENGTH specified is preserved.
Note that for multi-dimensional arrays only the last dimension can be
changed if PRESERVE is used.

When using PRESERVE there must be enough memory available for both
the original array and its changed version to exist simultaneously. The
memory allocated to the original array is freed as the command exits.

RKENAIVIE

RENAME old$ AS new$

Rename a file or a directory from “old$’ to ‘new$’. Both are strings.

A directory path can be used in both 'old$' and 'new$'. If the paths differ the
file specified in 'old$" will be moved to the path specified in 'new$' with the
file name as specified.

Page 120

Colour Maximite 2 User Manual Page 120

RESIURE

RESTORE [line]

Resets the line and position counters for the READ statement.

If ‘line’ is specified the counters will be reset to the beginning of the
specified line. ‘line’ can be a line number or label. A variable can also be
used as the parameter. In that case a numerical variable should be used for a
line number and a string variable for a label

If ‘line’ is not specified the counters will be reset to the start of the program.

KIVIDIK

RMDIR dir$ Remove, or delete, the directory “dir$’ on the SD card.
EJGN file$ Run the program 'file$' held on the SD card. Note that 'file$' must be a string
or constant (ie, "MYPROG.BAS") including the quotes required around a

RUN file$, cmdline

string constant. It cannot be a variable or expression.

If 'cmdline’ is specified it will be available to the running program as the
string returned by MM.CMDLINES$. ‘cmdline’ is not processed by MMBasic
S0 it can contain numbers, commas, quoted strings, etc. It is the
responsibility of the running program to decode this string of characters.

'file$' can be omitted and in that case MMBasic will run the "current
program name" which is the file last used by RUN, EDIT or AUTOSAVE.

See also the * (asterix) shortcut for RUN.

SAVE [UATA]IVIAGE]
SAVE DATA fname$, address,
size

Saves "size" bytes to file "fname$" starting from "address". This allows
areas of the Colour Maximite 2 memory to be saved as binary files. See also
LOAD DATA

SAVE IMAGE file$ [,x, y, W, h]

Save the current image on the VGA screen as a 24-bit BMP file.

file$' is the name of the file. If an extension is not specified “.BMP” will be
added to the file name.

X7, y’, ‘w’ and ‘h” are optional and are the coordinates (x and y are the top
left coordinate) and dimensions (width and height) of the area to be saved. If
not specified the whole screen will be saved.

SEEKR

SEEK [#]fnbr, pos

Will position the read/write pointer in a file that has been opened on the SD
card for RANDOM access to the 'pos' byte.

The first byte in a file is numbered one so SEEK #5,1 will position the
read/write pointer to the start of the file.

SELEUIT LASE

SELECT CASE value
CASE testexp [][, testexp] ...]

<statements>
<statements>
CASE ELSE

<statements>
<statements>
END SELECT

Executes one of several groups of statements, depending on the value of an
expression. 'value' is the expression to be tested. It can be a number or
string variable or a complex expression. 'testexp' is the value that 'exp' is to
be compared against. It can be:

o Asingle expression (ie, 34, "string" or PIN(4)*5) to which it may equal
o A rrange of values in the form of two single expressions separated by the
keyword "TO" (ie, 5 TO 9 or "aa" TO "cc")
e A comparison starting with the keyword "IS" (which is optional). For
example: IS >5, IS <= 10.
When a number of test expressions (separated by commas) are used the
CASE statement will be true if any one of these tests evaluates to true.

If 'value' cannot be matched with a 'testexp' it will be automatically matched to
the CASE ELSE. If CASE ELSE is not present the program will not execute
any <statements> and continue with the code following the END SELECT.

When a match is made the <statements> following the CASE statement will
be executed until END SELECT or another CASE is encountered when the
program will then continue with the code following the END SELECT.

An unlimited number of CASE statements can be used but there must be

Page 121

Colour Maximite 2 User Manual Page 121

only one CASE ELSE and that should be the last before the END SELECT.

Example:
SELECT CASE nbr%
CASE 4, 9, 22, 33 TO 88
statements
CASE IS < 4, IS > 88, 5 TO 8
statements
CASE ELSE
statements
END SELECT

Each SELECT CASE must have one and one only matching END SELECT
statement. Any number of SELECT...CASE statements can be nested inside
the CASE statements of other SELECT...CASE statements.

SERVU

SERVO 1 [, freq], 1A

or

SERVO 1[, freq], 1A, 1B
or

SERVO 1 [, freq], 1A, 1B, 1C
or

SERVO 2 [, freq], 2A

or

SERVO 2 [, freq], 2A, 2B
or

SERVO channel, STOP

Generate a constant stream of positive going pulses for driving a servo.

The Maximite has two servo controllers with the first being able to control
up to three servos and the second two servos. Both controllers are
independent and can be turned on and off and have different frequencies.
This command uses the 1/0 pins that are designated as PWM in the external
I/0 diagram (the two commands are very similar).

'1' or '2" is the controller number. ‘freq’ is the output frequency (between
20Hz and 1000 Hz) and is optional. If not specified it will default to 50 Hz

1A, 1B and 1C are the pulse widths for each of the controller 1 outputs while
2A and 2B are the pulse widths for the controller 2 outputs. The specified
1/0 pins will be automatically configured as outputs while any others will be
unaffected and can be used for other duties.

The pulse width for each output is independent of the others and is specified
in milliseconds, which can be a fractional number (ie, 1.536). For accurate
positioning the output resolution is about 0.005 ms. The minimum value is
0.01ms while the maximum is 18.9ms. Most servos will accept a range of
0.8ms to 2.2ms. The output will run continuously in the background while
the program is running and can be stopped using the STOP command. The
pulse widths of the outputs can be changed at any time (without stoping the
output) by issuing a new SERVO command.

The SERVO function will take control of any specified outputs and when
stopped the pins will be returned to a high impedance "not configured" state.

SEITFIN

SETPIN pin, cfg [, option]

Will configure an external 1/0 pin.

'pin" is the 1/O pin to configure, ‘cfg’ is the mode that the pin is to be set to
and 'option' is an optional parameter. 'cfg' is a keyword and can be any one
of the following:

OFF Not configured or inactive

AIN Analog input (ie, measure the voltage on the input). ‘option’
can be used to specify the number of bits in the conversion.
Valid values are 8, 10, 12, 14, and 16. The default (if not
specified) is 16 bits. The more bits the longer the conversion
will take. A single conversion takes between 0.2mSec (8-bit)
to 0.9mSec (16-bit).

DIN Digital input
If 'option’ is omitted the input will be high impedance
If 'option’ is the keyword "PULLUP" a simulated resistor will
be used to pull up the input pin to 3.3V If the keyword
"PULLDOWN?" is used the pin will be pulled down to zero
volts. The pull up/down is a constant current of about 50pA.

FIN Frequency input

Page 122

Colour Maximite 2 User Manual Page 122

‘option’ can be used to specify the gate time (the length of time
used to count the input cycles). It can be any number between 10
ms and 100000ms. Note that the PIN() function will always
return the frequency correctly scaled in Hz regardless of the gate
time used. If 'option' is omitted the gate time will be 1 second.
PIN Period input
‘option' can be used to specify the number of input cycles to
average the period measurement over. It can be any number
between 1 and 10000. Note that the PIN() function will
always return the average period of one cycle correctly scaled
in ms regardless of the number of cycles used for the average.
If 'option’ is omitted the period of just one cycle will be used.

CIN Counting input
The count pins are 7,13,15 and 24
‘option’ can be used to specify which edge triggers the count
and if any pullup or pulldown is enabled
1 specifies a rising edge with pulldown,
2 specifies a falling edge with pullup,
3 specifies that both a falling and rising edge will trigger a
count with no pullup or pulldown applied,
4 specifies both edges but with a pulldown and
5 specifies both edges but with a pullup applied.
If “‘option’ is omitted a rising edge will trigger the count and a
pulldown is enabled.

The count pins will trigger a call to their respective CSUB
routines, CFunclIntl, CFunctInt2, CFunctint3 or CFunctint4 if
the pointer to the function is set. This is setup in the CSUB. A
call to the CSUB routine would occur on each of the specified
edge transitions.

DOUT Digital output
‘option' can be "OC" in which case the output will be open
collector (or more correctly open drain). The functions PIN()
and PORT() can also be used to return the value on one or
more output pins .

Previous versions of MMBasic used numbers for 'cfg' and the mode OOUT.
For backwards compatibility they will still be recognised.

See the function PIN() for reading inputs and the statement PIN()= for
setting an output. See the command below if an interrupt is configured.

SETPIN pin, cfg, target |,
option]

Will configure “pin’ to generate an interrupt according to ‘cfg’. Any 1/O pin
capable of digital input can be configured to generate an interrupt with a
maximum of ten interrupts configured at any one time.

'cfg" is a keyword and can be any one of the following:

OFF Not configured or inactive
INTH Interrupt on low to high input
INTL Interrupt on high to low input

INTB Interrupt on both (ie, any change to the input)

‘target' is a user defined subroutine which will be called when the event
happens. Return from the interrupt is via the END SUB or EXIT SUB
commands.

‘option' can be the keywords "PULLUP" or "PULLDOWN" as specified for
a normal input pin (SETPIN pin DIN). If 'option’ is omitted the input will be
high impedance.

This mode also configures the pin as a digital input so the value of the pin

Page 123

Colour Maximite 2 User Manual Page 123

can always be retrieved using the function PIN().

SEIFIN L8,|LINFIN]

SETPIN 18,[CIN|FIN]
SETPIN 18,CIN[target]
SETPIN 18,FIN[,option]

Pin 18 is the FAST COUNT pin. It cannot be used for Period measurement.

‘target' is a user defined subroutine which will be called when the event
happens. Return from the interrupt is via the END SUB or EXIT SUB
commands.

‘option' can be used to specify the gate time (the length of time used to count
the input cycles). It can be any number between 10 ms and 100000 ms.
Note that the PIN() function will always return the frequency correctly
scaled in Hz regardless of the gate time used. If 'option’ is omitted the gate
time will be 1 second.

SEITILK [FAST |FAUSE |[KESUIVIE]

SETTICK period, target [, nbr]

SETTICK FAST frequency,
target

This will setup a periodic interrupt (or "tick™). Four tick timers are available
(nbr'=1, 2, 3 or4). 'nbr'is optional and defaults to timer number 1.

The time between interrupts is ‘period’ milliseconds and ‘target' is the
interrupt subroutine which will be called when the timed event occurs. The
period can range from 1 to 2147483647 ms (about 24 days).

These interrupts can be disabled by setting ‘period’ to zero

This allows you to exceed the current maximum rate of 1 interrupt per
millisecond (1000Hz) and has been tested up to 50KHz.

If the interrupt routine overruns the time available then interrupts will be
lost. If the program is executing a statement that takes longer than the time
between interrupts the interrupts will be stacked.

SETTICK PAUSE, target [, nbr]
or

SETTICK RESUME, target
[, nbr]

Pause or resume the specified tick timer. When paused the interrupt is
delayed but the current count is maintained.

SUKI

SORT array() [,indexarray]
[,flags] [,startposition]
[,elementstosort]

This command takes an array of any type (integer, float or string) and sorts it
into ascending order in place.

It has an optional parameter ‘indexarray%()’. If used this must be an integer
array of the same size as the array to be sorted. After the sort this array will
contain the original index position of each element in the array being sorted
before it was sorted. Any data in the array will be overwritten.This allows
connected arrays to be sorted. See the section Sorting Data in the tutorial
Programming with the Colour Maximite 2 for an example.

The “flag’ parameter is optional and valid flag values are:
bit0: 0 (default if omitted) normal sort - 1 reverse sort
bitl: 0 (default) case dependent - 1 sort is case independent (strings only).

bit2: 0 (default) normal sort - 1 empty strings go to the end of the array

The optional ‘startposition” defines which element in the array to start the
sort. Default is 0 (OPTION BASE 0) or 1 (OPTION BASE 1)

The optional ‘elementstosort” defines how many elements in the array
should be sorted. The default is all elements after the startposition.

Any of the optional parameters may be omitted so, for example, to sort just
the first 50 elements of an array you could use:

SORT array(), , , ,50

Page 124

Colour Maximite 2 User Manual Page 124

http://geoffg.net/Downloads/Maximite/Programming_with_the_Colour_Maximite_2.pdf

OFI

SPI OPEN speed, mode, bits
or

SPI READ nbr, array()

or

SPI WRITE nbr, datal, data2,
data3, ... etc

or
SPI WRITE nbr, string$
or

SPI WRITE nbr, array()
or

SPI1 CLOSE

Communications via an SPI channel. The command SPI refers to channel 1.
The command SPI2 refers to channel 2 and has an identical syntax.

nbr' is the number of data items to send or receive

'datal’, 'data2’, etc can be float or integer and in the case of WRITE can be a
constant or expression.

If 'string$' is used 'nbr' characters will be sent.

‘array' must be a single dimension float or integer array and 'nbr' elements
will be sent or received.

See Appendix D for the details.

OFKIIE

SPRITE

SPRITE CLOSE [#]n

SPRITE CLOSE ALL

SPRITE COPY [#]n, [#]m, nbr

SPRITE HIDE [#]n

SPRITE HIDE ALL

SPRITE HIDE SAFE [#]n

SPRITE INTERRUPT sub

SPRITE LOAD fname$
[,start_sprite_number]

Page 125

The SPRITE commands are used to manipulate small graphic images on the
VGA screen. These are useful when writing games.

The maximum size of a sprite is MM.HRES-1 and MM.VRES-1
See also the SPRITE() functions.

Closes sprite “n” and releases its memory resources allowing the sprite
number to be re-used. The command will give an error if other sprites are
copied from this one unless they are closed first.

Closes all sprites and releases all sprite memory. The screen is not changed.

Makes a copy of sprite “n” to “nbr” of new sprites starting a number “m”.
Copied sprites share the same loaded image as the original to save memory

Removes sprite n from the display and replaces the stored background. To
restore a screen to a previous state sprites should be hidden in the opposite
order to which they were written "LIFO"

Hides all the sprites allowing the background to be manipulated.

The following commands cannot be used when all sprites are hidden:
SPRITE SHOW (SAFE)

SPRITE HIDE (SAFE, ALL)

SPRITE SWAP

SPRITE MOVE

SPRITE SCROLLR

SPRITE SCROLL

Removes sprite n from the display and replaces the stored background.
Automatically hides all more recent sprites as well as the requested one and
then replaces them afterwards. This ensures that sprites that are covered by
other sprites can be removed without the user tracking the write order. Of
course this version is less performant than the simple version and should
only be used it there is a risk of the sprite being partially covered.

Specifies the name of the subroutine that will be called when a sprite
collision occurs. See Appendix E for how to use the function SPRITE to
interrogate details of what has collided

Loads the file ‘fname$’ which must be formatted as an original Colour
Maximite sprite file. See the original Colour Maximite MMBasic Language
Manual for the file format. Multiple sprite files can be loaded by specifying
a different ‘start_sprite_number’ for each file. The programmer is

Colour Maximite 2 User Manual Page 125

SPRITE LOADARRAY [#]n, w,
h, array%o()

SPRITE LOADPNG [#]n,
fname$ [, transparency_cut_off]

SPRITE MOVE

SPRITE NEXT [#]n, X, ¥

SPRITE NOINTERRUPT

SPRITE RESTORE

SPRITE READ [#]n, X, Yy, w, h
[,pagenumber]

SPRITE SCROLL x, y [,col]

SPRITE SCROLLR X, y, w, h,
delta_x, delta_y [,col]

Page 126

responsible for making sure that the sprites do not overlap.

Creates the sprite 'n' with width 'w' and height 'h' by reading w*h RGB888
values from ‘array%()'. The RGB888 values must be stored in order of
columns across and then rows down starting at the top left.

This allows the programmer to create simple sprites in a program without
needing to load them from disk or read them from the display. The firmware
will generate an error if 'array%()" is not big enough to hold the number of
values required.

Loads the PNG image ‘fname$’ as sprite number ‘n’.

If the PNG file is in ARGB8888 format the ‘transparency_cut_off’
parameter is used to determine whether the pixel should be solid or
missing/transparent. Valid values are 1 to 15, default is 8. MMBasic
compares the 4 most significant bits of the transparency data in the file with
the cut off value and assigns a transparency of 0 or 15 depending on the
comparison. This allows RGB(0,0,0) to be a valid solid colour.

If the file is in RGB888 format then an RGB level of 0,0,0 is used to
determine transparency as there is no other information to use.

Actions a single atomic transaction that re-locates all sprites which have
previously had a location change set up using the SPRITE NEXT command.
Collisions are detected once all sprites are moved and reported in the same
way as from a scroll

Sets the X and Y coordinate of the sprite to be used when the screen is next
scrolled or the SPRITE MOVE command is executed. Using SPRITE NEXT
rather than SPRITE SHOW allows multiple sprites to be moved as part of
the same atomic transaction.

Disables collision interrupts

Restores all the sprites. NB that any position changes previously requested
using SPRITE NEXT will be actioned by the RESTORE and collision
detection will be run

Reads the display area specified by coordinates ‘x’ and ‘y’, width ‘w’ and
height “h” into buffer number ‘n’. If the buffer is already in use and the
width and height of the new area are the same as the original then the new
command will overwrite the stored area.

The optional parameter page number specifies which page is to be read to
create the sprite. The default is the current write page.

Set the page to FRAMEBUFFER to read from the framebuffer — see the
FRAMEBUFFER command.

Scrolls the background and any sprites on layer 0 'x' pixels to the right and 'y'
pixels up. X' can be any number between -MM.HRES-1 and MM.HRES-1,
'y' can be any number between -MM.VRES-1 and MM.VRES-1.

Sprites on any layer other than zero will remain fixed in position on the
screen. By default the scroll wraps the image round. If ‘col' is specified the
colour will replace the area behind the scrolled image. If 'col' is set to -1 the
scrolled area will be left untouched.

Scrolls the region of the screen defined by top-right coordinates ‘x’ and ‘y’

and width and height ‘w’ and ‘h’ by ‘delta_x’ pixels to the right and

Colour Maximite 2 User Manual Page 126

SPRITE SHOW [#]n, x,y, layer,
[orientation]

SPRITE SHOW SAFE [#]n, X,y,
layer [,orientation] [,ontop]

SPRITE SWAP [#]n1, [#]n2
[,orientation]

SPRITE TRANSPARENCY
[#]n, transparency

SPRITE WRITE [#]n, x ¥y
[,orientation]

‘delta_y’ pixels up.

By default the scroll wraps the background round. If ‘col’ is specified the
colour will replace the area behind the scrolled image. Sprites on any layer
other than zero will remain fixed in position on the screen. Sprites in layer
zero where the centre of the sprite (x+ w/2, y+ h/2) falls within the scrolled
region will move with the scroll and wrap round if the centre moves outside
one of the boundaries of the scrolled region.

Displays sprite ‘n’ on the screen with the top left at coordinates ‘x’, ‘y’.
Sprites will only collide with other sprites on the same layer, layer zero, or
with the screen edge. If a sprite is already displayed on the screen then the
SPRITE SHOW command acts to move the sprite to the new location. The
display background is stored as part of the command and will be replaced
when the sprite is hidden or moved further.
‘orientation’ is optional and can be:

0 - normal display (default if omitted)

1 - mirrored left to right

2 - mirrored top to bottom

3 - rotated 180 degrees (= 1+2)

Shows a sprite and automatically compensates for any other sprites that
overlap it.

If the sprite is not already being displayed the command acts exactly the
same as SPRITE SHOW.

If the sprite is already shown it is moved and remains in its position relative
to other sprites based on the original order of writing. i.e. if sprite 1 was
written before sprite 2 and it is moved to overlap sprite 2 it will display
under sprite 2.

If the optional "ontop" parameter is set to 1 then the sprite moved will
become the newest sprite and will sit on top of any other sprite it overlaps.
Refer to SPRITE SHOW for details of the orientation parameter.

Replaces the sprite ‘n1” with the sprite ‘n2’. The sprites must have the same
width and height and ‘n1” must be displayed or an error will be generated.
Refer to SPRITE SHOW for details of the orientation parameter. The
replacement sprite inherits the background from the original as well as its
position in the list of order drawn.

Transparency can be between 1 and 15 and changes all pixels with a non-
zero transparency in the stored sprite to the new level.

Overwrites the display with the contents of sprite buffer ‘n’ with the top left
at coordinates ‘x’, ‘y’.

SPRITE WRITE overwrites the complete area of the display. The
background that is overwritten is not stored so SPRITE WRITE is inherently
higher performing than SPRITE SHOW but with greater functional
limitations. The optional 'orientation’ parameter defaults to 4 and specifies
how the stored image data is changed as it is written out. It is the bitwise
AND of the following values:

&B001 = mirrored left to right
&B010 = mirrored top to bottom
&B100 = don't copy transparent pixels

Page 127

Colour Maximite 2 User Manual Page 127

SIATIL

STATIC variable [, variables]
See DIM for the full syntax.

Defines a list of variable names which are local to the subroutine or function.
These variables will retain their value between calls to the subroutine or
function (unlike variables created using the LOCAL command).

This command uses exactly the same syntax as DIM. The only difference is
that the length of the variable name created by STATIC and the length of the
subroutine or function name added together cannot exceed 31 characters.

Static variables can be initialised to a value. This initialisation will take
effect only on the first call to the subroutine (not on subsequent calls).

SUB

SUB xxx (argl [,arg2, ...])
<statements>
<statements>

END SUB

Defines a callable subroutine. This is the same as adding a new command to
MMBasic while it is running your program.

'xxX' is the subroutine name and it must meet the specifications for naming a
variable. 'argl’, 'arg2', etc are the arguments or parameters to the subroutine.
An array is specified by using empty brackets. ie, arg3(). The type of the
argument can be specified by using a type suffix (ie, argl$) or by specifying
the type using AS <type> (ie, argl AS STRING).

Arguments in the caller's list that are a variable and have the correct type
will be passed by reference to the subroutine. This means that any changes to
the corresponding argument in the subroutine will also be copied to the
caller's variable and therefore may be accessed after the subroutine has
ended. The argument can be prefixed with BYVAL which will prevent this
mechanism and cause only the value to be used. Alternatively, the prefix
BYREF instructs MMBasic that a reference is required and an error will be
generated if that cannot be done.

Arrays are passed by specifying the array name with empty brackets (eg,
arg()) and are always passed by reference and must be the correct type.

Every definition must have one END SUB statement. When this is reached
the program will return to the next statement after the call to the subroutine.
The command EXIT SUB can be used for an early exit.

You use the subroutine by using its name and arguments in a program just as
you would a normal command. For example: MySub al, a2

When the subroutine is called each argument in the caller is matched to the
argument in the subroutine definition. These arguments are available only
inside the subroutine. Subroutines can be called with a variable number of
arguments. Any omitted arguments in the subroutine's list will be set to zero
or a null string.

Brackets around the argument list in both the caller and the definition are
optional.

IEIVIPK O TAK
TEMPR START pin [, precision]
[,timeout]

This command can be used to start a conversion running on a DS18B20
temperature sensor connected to 'pin’.

Normally the TEMPR() function alone is sufficient to make a temperature
measurement so usage of this command is optional.

This command will start the measurement on the temperature sensor. The
program can then attend to other duties while the measurement is running
and later use the TEMPR() function to get the reading. If the TEMPR()
function is used before the conversion time has completed the function will
wait for the remaining conversion time before returning the value.

Any number of these conversions (on different pins) can be started and be
running simultaneously.

‘precision’ is the resolution of the measurement and is optional. Itisa
number between 0 and 3 meaning:

0 = 0.5°C resolution, 100 ms conversion time.
1 = 0.25°C resolution, 200 ms conversion time (this is the default).

Page 128

Colour Maximite 2 User Manual Page 128

2 = 0.125°C resolution, 400 ms conversion time.
3 = 0.0625°C resolution, 800 ms conversion time.

The optional timeout parameter overrides the conversion times above to
allow for slow devices.

IEAI

TEXT X, vy, string$

[,alignment$] [, font] [, scale]

[.cl [be]

Displays a string on the VGA monitor starting at 'x' and 'y".

‘string$’ is the string to be displayed. Numeric data should be converted to a
string and formatted using the Str$() function.

"alignment$' is a string expression or string variable consisting of 0, 1 or 2
letters where the first letter is the horizontal alignment around 'x' and can be
L, C or R for LEFT, CENTER, RIGHT and the second letter is the vertical
alignment around 'y' and can be T, M or B for TOP, MIDDLE, BOTTOM.
The default alignment is left/top.

A third letter can be used in the alignment string to indicate the rotation of
the text. This can be 'N' for normal orientation, V' for vertical text with each
character under the previous running from top to bottom, 'l' the text will be
inverted (ie, upside down), 'U' the text will be rotated counter clockwise by
90° and 'D' the text will be rotated clockwise by 90°

'font' and 'scale’ are optional and default to that set by the FONT command.

'c" is the drawing colour and 'bc' is the background colour. They are optional
and default to the current foreground and background colours.

See the chapter "Basic Drawing Commands" for a definition of the colours
and graphics coordinates.

HIVIED

TIME$ = "HH:MM:SS"
or

TIME$ = "HH:MM"

or

Sets the time of the internal clock. MM and SS are optional and will default
to zero if not specified. For example TIME$ = "14:30" will set the clock to
14:30 with zero seconds.

Note:
o The time will be set to "00:00:00" on first power up.

TIMES$ = "HH" . . i
$ o The time will be remembered and kept updated as long as the battery is
installed and can maintain a voltage of over 2.5V.
e IMPORTANT: The date must also be set (using DATES$=) otherwise
the correct time will be lost after the power is cycled.
o Battery life should be 3 to 4 years even if the computer is powered off.
TIMES$ = £sec Adds or subtracts 'sec’ seconds from the current time being maintained by
MMBasic. This makes it easier to fine tune the current time.
'I|I'T||\t/r|<ER = msec Resets the timer to a number of milliseconds. Normally this is just used to
reset the timer to zero but you can set it to any positive integer. See the
TIMER function for more details.
'IFSAE\CE ON TRACE ON/OFF will turn on/off the trace facility. This facility will print
or the number of each line (counting from the beginning of the program) in
square brackets as the program is executed. This is useful in debugging
TRACE OFF programs.
or

TRACE LIST nn

TRACE LIST will list the last 'nn' lines executed in the format described
above. MMBasic is always logging the lines executed so this facility is
always available (ie, it does not have to be turned on).

IRIANGLE

TRIANGLE X1, Y1, X2, Y2,

X3, Y3[, C [, FILL]]

Draws a triangle on the VGA monitor with the corners at X1, Y1 and X2, Y2
and X3, Y3. 'C'is the colour of the triangle and defaults to the current
foreground colour. 'FILL' is the fill colour and defaults to no fill (it can also
be set to -1 for no fill).

Page 129

Colour Maximite 2 User Manual Page 129

All parameters can be expressed as arrays and the software will plot the
number of triangles as determined by the dimensions of the smallest array
unless X1 =Y1=X2=Y2=X3=Y3=-1inwhich case processing will
stop at that point 'x1', 'y1', 'x2', 'y2', 'x3',and 'y3' must all be arrays or all be
single variables /constants otherwise an error will be generated 'c' and 'fill'
can be either arrays or single variables/constants.

IUKILE

TURTLE

The firmware implements a full turtle graphics engine. See Appendix F

UFUAIE FIKIVIVVARE

UPDATE FIRMWARE

Switch the ARM Cortex-M7 CPU into firmware update mode.

This is the same as switching the BOOT CONFIG switch on the Waveshare
CPU board to SYSTEM or moving the BOOTO jumper to PROG and allows
for quick firmware updates without opening the Maximite's case.

You should cycle the power following a firmware update, this will return the
ARM Cortex-M7 CPU to normal mode. Cycling the power will also recover
if this command needed to be cancelled.

VAR [SAVE|KES I UKE[ULEAK]

VAR SAVE var [, var]...

or

VAR RESTORE
or

VAR CLEAR

VAR SAVE will save one or more variables to non volatile memory where
they can be restored later (normally after a power interruption).

'var' can be any number of numeric or string variables and/or arrays. Arrays
are specified by using empty brackets. For example: var()

VAR RESTORE will retrieve the previously saved variables and insert them
(and their values) into the variable table.

The VAR SAVE command can be used repeatedly. Variables that had been
previously saved will be updated with their new value and any new variables
(not previously saved) will be added to the saved list for later restoration.

VAR CLEAR will erase all saved variables. Also, the saved variables will
be automatically cleared by the NEW command or when a new program is
loaded via AUTOSAVE, XMODEM, etc.

This command is normally used to save calibration data, options, and other
data which needs to be retained across a power interruption. Normally the
VAR RESTORE command is placed at the start of the program so that
previously saved variables are restored and immediately available to the
program when it starts.

Notes:

e The storage space available to this command is 4KB. The memory used
is battery backed RAM which operates at high speed and can be written
to an unlimited number of times without restriction (unlike the
Micromite).

¢ Using VAR RESTORE without a previous save will have no effect and
will not generate an error.

o |f, when using RESTORE, a variable with the same name already exists
its value will be overwritten.

e Saved arrays must be declared (using DIM) before they can be restored.

Be aware that string arrays can rapidly use up all the memory allocated to
this command. The LENGTH qualifier can be used when a string array is
declared to reduce the size of the array (see the DIM command). This is not
needed for ordinary string variables.

WAILHDUL

WATCHDOG timeout
or
WATCHDOG OFF

Starts the watchdog timer which will automatically restart the processor
when it has timed out. This can be used to recover from some event that
disabled the running program (such as an endless loop or a programming or
other error that halts a running program). This can be important in an

Page 130

Colour Maximite 2 User Manual Page 130

unattended control situation.
'timeout' is the time in milliseconds (ms) before a restart is forced.

This command should be placed in strategic locations in the running BASIC
program to constantly reset the watchdog timer and therefore prevent it from
counting down to zero.

If the timer count does reach zero (perhaps because the BASIC program has
stopped running) the Maximite will be restarted and the automatic variable
MM.WATCHDOG will be set to true (ie, 1) indicating that an error
occurred. On a normal startup MM.WATCHDOG will be set to false (ie, 0).

WATCHDOG OFF will disable the watchdog timer (this is the default on a
reset or power up). The timer is also turned off when the break character
(normally CTRL-C) is used on the console to interrupt a running program.

WII LLASSIL

WII CLASSIC OPEN [n]
[interrupt [,bitmask]]

or
WII CLASSIC CLOSE [n]

See the CONTROLLER COMMAND

WII NUNUHUR

WII NUNCHUK OPEN [n]
[,Zinterrupt [,Cinterrupt]]

or
WII NUNCHUK CLOSE [n]

See the CONTROLLER COMMAND

AIMIUUEIVI |SENU | RECEIVE]

XMODEM SEND file$
[,comportno]

or

XMODEM RECEIVE file$
[,comportno]

Transfers a BASIC program to or from a remote computer using the
XModem protocol. The transfer is done over the serial console connection.

XMODEM SEND will send 'file$' held on the Colour Maximite's SD card to
the remote device. SEND can be abbreviated to S.

XMODEM RECEIVE will accept ‘file$' sent by the remote device and save
it on the Colour Maximite's SD card. If the file already exists it will be
overwritten when receiving a file. RECEIVE can be abbreviated to R.

The XModem protocol requires a cooperating software program running on
the remote computer and connected to its serial port. It has been tested on
Tera Term running on Windows and it is recommended that this be used.
After running the XMODEM command in MMBasic select:

File -> Transfer -> XMODEM -> Receive/Send
from the Tera Term menu to start the transfer.

The transfer can take up to 15 seconds to start and if the XMODEM
command fails to establish communications it will return to the MMBasic
prompt after 60 seconds and leave the program memory untouched.

If ‘commportno’ is specified the transfer will take place over the serial port
specified (1 or 2). In this case the port must have been previously opened
with an appropriate baudrate.

Download Tera Term from http://ttssh2.sourceforge.jp/

Page 131

Colour Maximite 2 User Manual Page 131

http://ttssh2.sourceforge.jp/

Page 132 Colour Maximite 2 User Manual Page 132

Functions

Note that the functions related to communications functions (1°C, 1-Wire, and SPI) are not listed here but are
described in the appendices at the end of this document.

Square brackets indicate that the parameter or characters are optional.

ABS

ABS(number)

Returns the absolute value of the argument 'number' (ie, any negative sign is
removed and the positive number is returned).

ALLS

ACOS(number)

Returns the inverse cosine of the argument 'number’ in radians.

ASL

ASC(string$)

Returns the ASCII code for the first letter in the argument ‘string$’.

ASIN

ASIN(number)

Returns the inverse sine value of the argument 'number' in radians.

ATANZ

ATAN2(y, X) Returns the arc tangent of the two numbers x and y as an angle expressed in
radians.
It is similar to calculating the arc tangent of y / X, except that the signs of
both arguments are used to determine the quadrant of the result.

AIN

ATN(number)

Returns the arctangent of the argument 'number’ in radians.

BASE

BASE$(base, number [, chars])

Returns a string giving the base value for the 'number.

‘chars' is optional and specifies the number of characters in the string with
zero as the leading padding character(s). Base can be between 2 and 36.
Numbers greater than 9 are represented by a letter as per the HEX notation.

Example: PRINT BASE$(36, 35) will display "Z"
Internally the functions BIN$, OCT$, and HEXS$ use this function.

BAUURAIE

BAUDRATE(comm [,
timeout])

Returns the baudrate of any data received on the serial communications port
‘comm”).

This will sample the port over the period of 'timeout' seconds. 'timeout' will
default to one second if not specified.

Returns zero if no activity on the port within the timeout period.

BIND

BIN$(number [, chars])

Returns a string giving the binary (base 2) value for the 'number".

‘chars' is optional and specifies the number of characters in the string with
zero as the leading padding character(s).

BINZS KD

BIN2STR$(type, value [,BIG])

Returns a string containing the binary representation of 'value'.
'type' can be:
INT64 signed 64-bit integer converted to an 8 byte string

UINT64 unsigned 64-bit integer converted to an 8 byte string

INT32 signed 32-bit integer converted to a 4 byte string

UINT32 unsigned 32-hit integer converted to a 4 byte string

INT16 signed 16-bit integer converted to a 2 byte string

UINT16 unsigned 16-bit integer converted to a 2 byte string

INT8 signed 8-bit integer converted to a 1 byte string

UINT8 unsigned 8-bit integer converted to a 1 byte string

SINGLE single precision floating point number converted to a 4 byte string

DOUBLE double precision floating point number converted to a 8 byte string

By default the string contains the number in little-endian format (ie, the least
significant byte is the first one in the string). Setting the third parameter to

Page 133

Colour Maximite 2 User Manual Page 133

‘BIG” will return the string in big-endian format (ie, the most significant
byte is the first one in the string) In the case of the integer conversions, an
error will be generated if the ‘value’ cannot fit into the ‘type’ (eg, an
attempt to store the value 400 in a INTS).

This function makes it easy to prepare data for efficient binary file 1/0 or for
preparing numbers for output to sensors and saving to flash memory.

See also the function STR2BIN

[=1}]

BIT(var%, hitno)

'returns the value of a specific bit (0-63) in an integer variable (0 or 1).
See also the BIT command

BUUNU

BOUND(array() [,dimension]

This returns the upper limit of the array for the dimension requested.

The dimension defaults to one if not specified. Specifying a dimension value
of 0 will return the current value of OPTION BASE.

Unused dimensions will return a value of zero.
For example:

DIM myarray(44,45)

BOUND(myarray(),2) will return 45

BYIE

BYTE(var$, byteno)

Returns the integer value of a specific byte in a string (0-255). This is the
equivalent of ASC(MID$(var$,byteno, 1)) but operates much faster.

See also the BYTE command

CALL

CALL (userfunname$,
[,userfunparameters,....])

This is an efficient way of programmatically calling user defined functions.
(See also the CALL command). In many cases it can be used to eliminate
complex SELECT and IF THEN ELSEIF ENDIF clauses and is processed in
a much more efficient manner.

“userfunname$” can be any string or variable or function that resolves to the
name of a normal user function (not an in-built command).

“userfunparameters” are the same parameters that would be used to call the
function directly.

A typical use for this command could be writing any sort of emulator where
one of a large number of functions should be called depending on a some
variable. It also provides a method of passing a function name to another
subroutine or function as a variable.

CHUILE
CHOICE(condition,
ExpressionlfTrue,
ExpressionlfFalse)

This function allows you to do simple either/or selections more efficiently
and faster than using IF THEN ELSE ENDIF clauses.

The condition is anything that will resolve to nonzero (true) or zero (false).
The expressions are anything that you could normally assign to a variable or
use in a command and can be integers, floats or strings.

Examples:
PRINT CHOICE(1, "hello","bye") will print "Hello"
PRINT CHOICE (0, "hello","bye") will print "Bye"
a=1: b=1:PRINT CHOICE (a=b, 4, 5) will print 4

CHRY

CHR$(number)

Returns a one-character string consisting of the character corresponding to
the ASCII code indicated by argument 'number'.

CINI

CINT(number)

Round numbers with fractional portions up or down to the next whole
number or integer.
For example, 45.47 will round to 45

45.57 will round to 46

-34.45 will round to -34

Page 134

Colour Maximite 2 User Manual Page 134

-34.55 will round to -35
See also INT() and FIX().

CLAdSIL

CLASSIC(funct [, channel])

Returns data from a Wii Classic controller.

'channel’ is optional and is the 1°C channel for the controller (defaults to 3,
the front panel).

'funct' is a 1 or 2 letter code indicating the information to return as follows:
LX returns the position of the analog left joystick x axis
LY returns the position of the analog left joystick y axis
RX returns the position of the analog right joystick x axis
RY returns the position of the analog right joystick y axis
L returns the position of the analog left button
R returns the position of the analog right button

B returns a bitmap of the state of all the buttons. A bit will be set to 1 if the
button is pressed.

T returns the ID code of the controller - should be hex &H4200101
The button bitmap is as follows:

BIT O0: Button R

BIT 1: Button start

BIT 2: Button home

BIT 3: Button select

BIT 4: Button L

BIT 5: Button down cursor

BIT 6: Button right cursor

BIT 7: Button up cursor

BIT 8: Button left cursor

BIT 9: Button ZR

BIT 10: Button x

BIT 11: Button a

BIT 12: Button y

BIT 13: Button b

BIT 14: Button ZL

These bit positions are also used in the interrupt bitmask specified in the WII
CLASSIC OPEN command

LLS

COS(number)

Returns the cosine of the argument 'number’ in radians.

CwWuU»

CWD$ Returns the current working directory on the SD card as a string.
The formatis: A:z/dirl/dir2. See also MM.INFO(DIRECTORY)
which will return the same thing but will always have a ‘/* character at the
end

DAIED

DATES$ Returns the current date based on MMBasic’s internal clock as a string in the
form "DD-MM-YYYY". For example, "28-07-2012".
The internal clock/calendar will keep track of the time and date including
leap years. To set the date use the command DATES =.

DATEITIIVIED

DATETIMES$(n)

Returns the date and time corresponding to the epoch number n (number of
seconds that have elapsed since midnight GMT on January 1, 1970). The
format of the returned string is “dd-mm-yyyy hh:mm:ss”. Use the text NOW
to get the current datetime string, i.e. ? DATETIME$(NOW)

Page 135

Colour Maximite 2 User Manual Page 135

DAYD

DAY $(date$)

Returns the day of the week for a given date as a string “Monday”,
“Tuesday” etc. The format for date$ is "DD-MM-YY", "DD-MM-YYYY",
or"YYYY-MM-DD". Use NOW to get the day for the current date, e.g.
PRINT DAY$(NOW)

DEG

DEG(radians)

Converts 'radians' to degrees.

DIRD

DIRS$(fspec, type)
or

DIRS$(fspec)

or

DIRS$()

Will search an SD card for files and return the names of entries found.

'fspec' is a file specification using wildcards the same as used by the FILES
command. Eg, "*" will return all entries, "*. TXT" will return text files.

'type' is the type of entry to return and can be one of:

ALL Search for both files and directories
DIR Search for directories only
FILE Search for files only (the default if 'type' is not specified)

The function will return the first entry found. To retrieve subsequent entries
use the function with no arguments. ie, DIR$(). The return of an empty
string indicates that there are no more entries to retrieve.
This example will print all the files in a directory:

$ = DIR$('™*", FILE)

DO WHILE f$ <> ™"

PRINT f$
£$ = DIR$Q)
LOOP

You must change to the required directory before invoking this command.

DISTANLE

DISTANCE(trigger, echo)
or
DISTANCE(trig-echo)

Measure the distance to a target using the HC-SR04 ultrasonic distance
sensor.

Four pin sensors have separate trigger and echo connections. 'trigger' is the
I/0 pin connected to the "trig" input of the sensor and 'echo’ is the pin
connected to the "echo" output of the sensor.

Three pin sensors have a combined trigger and echo connection and in that
case you only need to specify one I/O pin to interface to the sensor.

Note that any 1/O pins used with the HC-SR04 should be 5V capable as the
HC-SR04 is a 5V device. The I/O pins are automatically configured by this
function and multiple sensors can be used on different 1/O pins.

The value returned is the distance in centimetres to the target or -1 if no
target was detected or -2 if there was an error (ie, sensor not connected).

URAWSD

DRAW3D()

The DRAWS3D function can be used to determine the boundaries of a 3D
object and could be used to define an area to be erased before re-drawing.

See the 3D Engine sections for details. The updated The 3D Engine
document included in the download has details.

See this link for an example.
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=18483

EUF

EOF([#]nbr)

Will return true if the file previously opened on the SD card for INPUT with
the file number “#fnbr’ is positioned at the end of the file.

For a serial communications port this function will return true if there are no
characters waiting in the receive buffer. #0 can be used which refers to the
console's input buffer.

The # is optional. Also see the OPEN, INPUT and LINE INPUT commands
and the INPUT$ function.

Page 136

Colour Maximite 2 User Manual Page 136

https://fruitoftheshed.com/wiki/lib/exe/fetch.php?media=mmbasic_hardware:cmm2:the_3d_engine.pdf
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=18483

EFULH

EPOCH(DATETIMES)

Returns the epoch number (number of seconds that have elapsed since
midnight GMT on January 1, 1970) for the supplied DATETIMES string.
The format for DATETIMES is “dd-mm-yyyy hh:mm:ss”, “dd-mm-yy
hh:mm:ss”, or “yyyy-mm-dd hh:mm:ss”,. Use NOW to get the epoch
number for the current date and time, i.e. PRINT EPOCH(NOW)

EVAL

EVAL(string$)

Will evaluate 'string$' as if it is a BASIC expression and return the result.
'string$' can be a constant, a variable or a string expression. The expression
can use any operators, functions, variables, subroutines, etc that are known at
the time of execution. The returned value will be an integer, float or string
depending on the result of the evaluation.

For example: S$ ="COS(RAD(30)) * 100" :
Will display: 86.6025

PRINT EVAL(SS$)

EAF

EXP(number)

Returns the exponential value of 'number’, ie, e where x is 'number.

FIELDS$(stringl, nbr, string2 [,
string3])

Returns a particular field in a string with the fields separated by delimiters.

'nbr' is the field to return (the first is nbr 1). 'stringl' is the string to search
and 'string2' is a string holding the delimiters (more than one can be used).
'string3' is optional and if specified will include characters that are used to
guote text in 'stringl' (ie, quoted text will not be searched for a delimiter).

For example:
S$ = "foo, boo, zoo, doo"
r$ = FIELD$(s$, 2, ",™)

will result in r$ = "boo". While:
s$ = "foo, "boo, zoo", doo™
r$ FIELD$(S$, 2’ ll’ll’ IIIII)

will result in r$ = "boo, zoo".

FIA

FIX(number)

Truncate a number to a whole number by eliminating the decimal point and
all characters to the right of the decimal point.
For example 9.89 will return 9 and -2.11 will return -2,

The major difference between FIX and INT is that FIX provides a true
integer function (ie, does not return the next lower number for negative
numbers as INT() does). This behaviour is for Microsoft compatibility.

See also CINT() .

FLAG

FLAG(n%)

Returns the value (0 or 1) of the bit n% (0-63) in the system flag register.
See also MM.FLAGS and the FLAG and FLAGS commands

FURIVIA TS

FORMATS$(nbr [, fmt$])

Will return a string representing ‘nbr’ formatted according to the
specifications in the string ‘fmt$’.

The format specification starts with a % character and ends with a letter.
Anything outside of this construct is copied to the output as is.

The structure of a format specification is:
% [flags] [width] [.precision] type
Where “flags’ can be:
- Left justify the value within a given field width

0 Use 0 for the pad character instead of space
+ Forces the + sign to be shown for positive numbers
space Causes a positive value to display a space for the sign. Negative

values still show the — sign

Page 137

Colour Maximite 2 User Manual Page 137

‘width’ is the minimum number of characters to output, less than this the
number will be padded, more than this the width will be expanded.

‘precision’ specifies the number of fraction digits to generate with an e, or f
type or the maximum number of significant digits to generate with a g type.
If specified, the precision must be preceded by a dot (.).

‘type’ can be one of:

g Automatically format the number for the best presentation.
f Format the number with the decimal point and following digits
e Format the number in exponential format

If uppercase G or F is used the exponential output will use an uppercase E.
If the format specification is not specified “%g” is assumed.

Examples: format$(45) will return 45
format$(45, “%g”) will return 45
format$(24.1, “%g”) will return 24.1
format$(24.1,”%f”) will return 24.100000
format$(24.1, “%e”) will return 2.410000e+01
format$(24.1,"%09.3f") will return 00024.100
format$(24.1,"%+.3f") will return +24.100
format$(24.1,"**%-9.3f**") will return **24.100 **

GEITSUANLINE

GETSCANLINE

This will report on the line that is currently being drawn on the VGA
monitor. Using this to time updates to the screen can avoid timing effects
caused by updates while the screen is being updated. The first visible line
will return a value of 0. Any line number above MM.VRES is in the frame
blanking period.

[Tl

GPS()

GPS(ALTITUDE)
GPS(DATE)
GPS(DOP)
GPS(FIX)
GPS(GEOID)

GPS(LATITUDE)

GPS LONGITUDE)

GPS(SATELLITES)
GPS(SPEED)
GPS(TIME)

GPS(TRACK)

Page 138

The GPS functions are used to return data from a serial communications
channel opened as GPS.

The function GPS(VALID) should be checked before any of these functions
are used to ensure that the returned value is valid.

Returns current altitude (if sentence GGA is enabled).

Returns the normal date string corrected for local time e.g. “12-01-2020".
Returns DOP (dilution of precision) value (if sentence GGA is enabled).
Returns DOP (dilution of precision) value (if sentence GGA is enabled).

Returns the geoid-ellipsoid separation (if sentence GGA is enabled).

Returns the latitude in degrees as a floating point number, values are
negative for South of equator

Returns the longitude in degrees as a floating point number, values are
negative for West of the meridian.

Returns number of satellites in view (if sentence GGA is enabled).
Returns the ground speed in knots as a floating point number.
Returns the normal time string corrected for local time e.g. “12:09:33".

Returns the track over the ground (degrees true) as a floating point number.

Colour Maximite 2 User Manual Page 138

GPS(VALID)

Returns: O=invalid data, 1=valid data

HEAD

HEX$(number [, chars])

Returns a string giving the hexadecimal (base 16) value for the 'number'.

‘chars' is optional and specifies the number of characters in the string with
zero as the leading padding character(s).

INKEYD

INKEY$

Checks the console input buffer and, if there is one or more characters
waiting in the queue, will remove the first character and return it as a single
character in a string. If this is a carriage return, it is likely that there will be
a line feed character following as often the enter key will produce a CR/LF
pair.

If the input buffer is empty this function will immediately return with an
empty string (ie, "").

INFU D

INPUT$(nbr, [#]fnbr)

Will return a string composed of ‘nbr’ characters read from a file on the SD
card previously opened for INPUT with the file number “#fnbr’. This
function will read all characters including carriage return and new line
without translation.

Will return a string composed of ‘nbr’ characters read from a serial
communications port opened as ‘fnbr'. This function will return as many
characters as are waiting in the receive buffer up to ‘nbr’. If there are no
characters waiting it will immediately return with an empty string.

#0 can be used which refers to the console's input buffer.
The # is optional. Also see the OPEN command.

INDSIK
INSTR([start-position,] string-
searched$, string-pattern$

[,size])

Returns the position at which 'string-pattern$' occurs in 'string-searched$',
beginning at 'start-position’.

Both the position returned and 'start-position' use 1 for the first character, 2
for the second, etc. The function returns zero if 'string-pattern$' is not found.

If the optional size parameter is specified the firmware interprets the search
string as a regular expression. The size parameter is a floating point or
integer variable that is used by the firmware to return the size of a matching
string.

See Appendix G — Regular Expressions for details.

1IN

INT(number)

Truncate an expression to the next whole number less than or equal to the
argument. For example 9.89 will return 9 and -2.11 will return -3.

This behaviour is for Microsoft compatibility, the FIX() function provides a
true integer function.

See also CINT() .

JOUND

JSONS$(array%o(),string$)

Returns a string representing a specific item out of the JSON input stored in
the longstring array%o()

Examples taken from api.openweathermap.org
JSON$(a%(), “name™)
JSONS$(a%(), “coord.lat™)
JSON$(a%(), “weather[0].description™)
JSONS$(a%(),” list[4].weather[0].description

KEYDUVVIN

KEYDOWN(n)

Return the decimal ASCII value of the USB keyboard key that is currently
held down or zero if no key is down. The decimal values for the function
and arrow keys are listed in Appendix F.

This function will report multiple simultaneous key presses and the

Page 139

Colour Maximite 2 User Manual Page 139

parameter 'n' is the number of the keypress to report. KEYDOWN(0) will
return the number of keys being pressed

For example, if "c", "g" and "p" are pressed simultaneously KEYDOWN(0)
will return 3, KEYDOWN(1) will return 99, KEYDOWN(2) will return 103,
etc. The keys do not need to be pressed simultaneously and will report in the
order pressed. Taking a finger off a key will promote the next key pressed to
#1.

The first key ('n' = 1) is entered in the keyboard buffer (accessible using
INKEY$) while keys 2 to 6 can only be accessed via this function. Using
this function will clear the console input buffer.

KEYDOWN(7) will give any modifier keys that are pressed. These keys do
not add to the count in keydown(0)

The return value is a bitmask as follows:
lalt 2 1, lctrl ? 2, Igui ? 4, Ishift ? 8, ralt ? 16, rctrl ? 32, rgui ? 64, rshift ? 128

KEYDOWN(8) will give the current status of the lock keys. These keys do
not add to the count in keydown(0)

The return value is a bitmask as follows:
caps_lock ? 1, num_lock ? 2, scroll_lock ? 4

Note that some keyboards will limit the number of active keys that they can
report on.

LUASED

LCASES$(string$) Returns “string$’ converted to lowercase characters.

LUUIVIFPARE . i

LCOMPARE (array1%(), Compare the contents of two long string variables array1%() and array2%().
array2%()) The returned is an integer and will be -1 if array1%() is less than array2%o().

It will be zero if they are equal in length and content and +1 if array1%() is
greater than array2%(). The comparison uses the ASCII character set and is
case sensitive.

LEFID

LEFT$(string$, nbr)

Returns a substring of ‘string$” with ‘nbr' of characters from the left
(beginning) of the string.

LEN

LEN(string$)

Returns the number of characters in 'string$'.

LLEIBYIE

LGETBYTE(array%(), n)

Returns the numerical value of the 'n'th byte in the LONGSTRING held in
‘array%()". This function respects the setting of OPTION BASE in
determining which byte to return.

LOEISIRD

LGETSTRS(array%(), start,
length)

Returns part of a long string stored in array%() as a normal MMBasic string.
The parameters start and length define the part of the string to be returned.

LINFU I

LINPUT (array%!(),fnbr,nbr)

This reads nbr bytes from a file open as fnbr into the LONGSTRING
array%(). The function returns the number of bytes actually read so if you
are near the end of the file the number may be less than the number
requested. It only works with file 1/0O and not serial or console 1/O

LINDIK

LINSTR(array%:(), search$
[,start][,size])

Returns the position of a search string in a long string. The returned value is
an integer and will be zero if the substring cannot be found. array%o() is the
string to be searched and must be a long string variable. Search$ is the
substring to look for and it must be a normal MMBasic string or expression
(not a long string). The search is case sensitive.

Normally the search will start at the first character in 'str' but the optional
third parameter allows the start position of the search to be specified.

If the optional size parameter is specified the firmware interprets the search
string as a regular expression. The size parameter is a floating point or

Page 140

Colour Maximite 2 User Manual Page 140

integer variable that is used by the firmware to return the size of a matching
string.
See Appendix G — Regular Expressions for details.

LLEN

LLEN(array%())

Returns the length of a long string stored in array%o()

LUL

LOC([#]fnbr)

For a file on the SD card opened as RANDOM this will return the current
position of the read/write pointer in the file. Note that the first byte in a file
is numbered 1.

For a serial communications port opened as ‘fnbr' this function will return the
number of bytes received and waiting in the receive buffer to be read. #0
can be used which refers to the console's input buffer.

The # is optional.

LUK

LOF([#]fnbr)

For a file on the SD card this will return the current length of the file in
bytes.

For a serial communications port opened as ‘fnbr' this function will return the
space (in characters) remaining in the transmit buffer. Note that when the
buffer is full MMBasic will pause when adding a new character and wait for
some space to become available.

The # is optional.

LLUG

LOG(number)

Returns the natural logarithm of the argument 'number'.

IVIAF

MAP (number)

This function returns the RGB332 colour that is used internally to map to the
colour lookup table (CLUT) when using 8-bit colour depths.

For example MAP(255) will always return &HEOEOCO which the firmware
will then convert to 255. This is a way of selecting the normal colour that
will find the place in the CLUT you want. It is not a window into the CLUT.

See also the MAP command.

IVIATH

MATH

Simple functions
MATH(ATANS3 x,y)
MATH(COSH a)
MATH(LOG10 a)
MATH(SINH a)
MATH(TANH a)
Simple Statistics
MATH(CHI a())

MATH(CHI_p a())

MATH(CROSSING array()

The math function performs many simple mathematical calculations that can
be programmed in Basic but there are speed advantages to coding looping
structures in C and there is the advantage that once debugged they are there
for everyone without re-inventing the wheel.

Returns ATAN3 of x and y
Returns the hyperbolic cosine of a
Returns the base 10 logarithm of a
Returns the hyperbolic sine of a

Returns the hyperbolic tan of a

Returns the Pearson's chi-squared value of the two dimensional array a())

Returns the associated probability in % of the Pearson's chi-squared value of
the two dimensional array a())

This returns the array index at which the values in the array pass the "level"
in the direction specified. level defaults to 0. Direction defaults to 1 (valid

Page 141

Colour Maximite 2 User Manual Page 141

[level] [,direction]

MATH(CORREL a(), a())

MATH(MAX a())

MATH(MEAN a())

MATH(MEDIAN a())

MATH(MIN a())

MATH(SD a())

MATH(SUM a())

Vector Arithmetic
MATH(MAGNITUDE v())
MATH(DOTPRODUCT vi(),
v2())

Matrix Arithmetic

MATH(M_DETERMINANT
array!())

values are -1 or 1)

Returns the Pearson’s correlation coefficient between arrays a() and b()
Returns the maximum of all values in the a() array, a() can have any number
of dimensions

Returns the average of all values in the a() array, a() can have any number of
dimensions

returns the median of all values in the a() array, a() can have any number of
dimensions

Returns the minimum of all values in the a() array, a() can have any number
of dimensions

Returns the Sample Standard Deviation of all values in the a() array, a() can
have any number of dimensions

Returns the sum of all values in the a() array, a() can have any number of
dimensions

Returns the magnitude of the vector v(). The vector can have any number of
elements

Returns the dot product of two vectors v1() and v2(). The vectors can have
any number of elements but must have the same cardinality

Returns the determinant of the array. The array must be square.

IVIATH URU

MATH(CRCn array(), length,
[polynome,] [startmask,]
[endmask,] [reverseln,]
[reverseOut]

MATH(CRCn string$, length,
[polynome,] [startmask,]
[endmask,] [reverseln,]
[reverseOut]

Calculates CRC value of array or string. CRCn can be one of CRCS,
CRC12, CRC16 or CRC32.

Defaults for startmask, endmask, reverseln and reversOut are all zero.

reverseln true (1) means the bits of the input byte will be reflected i.e. used
in reverse order. i.e. BO is treated as the most significant bit.

reverseOut true (1) means the CRC value calculated is reflected over the
whole length of the CRC value.

startmask is the value initially loaded to start the calculation?.

Defaults for polynomes are CRC8=&H07, CRC12=&H80D,
CRC16=&H1021, crc32=&H04C11DB7.

For CRC16-CCITT use MATH(CRC16 array(), n,, &HFFFF) e.g.
DIM a%(8)=(49,50,51,52,53,54,55,56,57)

a$="123456789" n=9 (length)

PRINT HEX$(MATH(CRC16 a%(),9,,&HFFFF)) gives &H29B1
For CRC16-MODBUS use MATH(CRC16 a$, n,, &HFFFF)

For CRC16-XMODEM use MATH(CRC16 a$, n,, &HFFFF)

For CRC8-MAXIM use MATH(CRC16 a$ n,, &HFFFF)

Page 142

Colour Maximite 2 User Manual Page 142

CRC32 use MATH (CRC32 a$,n, &hffffffff, &hffffffff,1,1)
For ONEWIRE use MATH(CRCB8 romcode(),n,&h31,0,0,1,1)

MATH(CRCn function also accepts a string as the input.

e.g.
a$="123456789"
? math(crc16 a$,9,,&H1021)

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&T1D=15405
See Appendix | = Cyclic Redundancy Check (CRC)

IVIATH(BASED4 ENLUDE/DELUDE

MATH(BASE64 [ENCODE]|
DECODE] in$/in(),

out$/out())

Returns the length of out$/out(). This base64 encodes or decodes the data in
'in" and puts the result in ‘out’. Where arrays are used as the output they must
be big enough relative to the input and the direction. Encryption increases
length by 4/3 and decryption decreases it by 3/4

IVIATH FID
MATH(PID channel, setpoint!,
measurement!)

This function must be called in the PID callback subroutine for the ‘channel’
specified and returns the output of the controller function.

The ‘setpoint’ value is the desired state that the controller is trying to
achieve.

The ‘measurement’ is the current value of the real world.
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263
For an example of setting up and running a PID controller.

IVIAA/ IVIIN

MAX(argl [, arg2 [, ...11)
or
MIN(argl [, arg2 [, ...]])

Returns the maximum or minimum number in the argument list.

Note that the comparison is a floating point comparison (integer arguments
are converted to floats) and a float is returned.

VDD

MID$(string$, start)
or
MID$(string$, start, nbr)

Returns a substring of ‘string$’ beginning at ‘start” and continuing for ‘nbr’
characters. The first character in the string is number 1.

If ‘nbr’ is omitted the returned string will extend to the end of ‘string$’

VivusE

MOUSE(funct [, channel])

Returns data from a Mouse controller supporting the Hobbytronic protocol.

'channel’ is optional and is the IC channel for the controller (defaults to 2,
pins 27 and 28).

'funct' is a 1 letter code indicating the information to return as follows:
X returns the value of the mouse X-position
Y returns the value of the mouse Y-position
L returns the value of the left mouse button (1 if pressed)
R returns the value of the right mouse button (1 if pressed)
W returns the value of the scroll wheel mouse button (1 if pressed)
D This allows you to detect a double click of the left mouse button .

The algorithm say the two clicks must occur between 100 and 500
milliseconds apart. The report via MOUSE(D) is then valid for 500mSec
before it times out or until it is read.

T returns O

MOUSE(funct, 0)

Returns data from a PS2 mouse

'funct' is a 1 letter code indicating the information to return as follows:
X returns the value of the mouse X-position
Y returns the value of the mouse Y-position
L returns the value of the left mouse button (1 if pressed)

Page 143

Colour Maximite 2 User Manual Page 143

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=15405
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263

R returns the value of the right mouse button (1 if pressed)
W returns the value of the scroll wheel mouse button (1 if pressed)

D This allows you to detect a double click of the left mouse button. The
algorithm requires that the two clicks must occur between 100 and
500 milliseconds apart. The report via MOUSE(D) is then valid for
500mSec before it times out or until it is read.

T This returns 3 if a PS2 mouse has a scroll wheel or 0 if not.

NUNUHURK

NUNCHUK(channel, funct)

Returns data from a Nunchuk controller.

'channel’ is optional and is the 1C channel for the controller (defaults to 3,
the front panel).

'funct' is a 2 or 3 letter code indicating the information to return as follows:

JX returns the value of the joystick X-axis

JY returns the value of the joystick Y-axis

AX returns the value of the x acceleration

AY returns the value of the y acceleration

AZ returns the value of the z acceleration

Z returns the value of the z button (1 if pressed)

C returns the value of the ¢ button (1 if pressed)

T returns the id code of the Wii device: &HA4200000=0riginal,
&HA4200101=Classic, &HA4200402=Balance

JXL returns the calibrated X value of the joystick in the far left position
JXC returns the calibrated X value of the joystick in the centre position
JXR returns the calibrated X value of the joystick in the far right position
JYT returns the calibrated Y value of the joystick in the top position
JYC returns the calibrated Y value of the joystick in the centre position
JYB returns the calibrated Y value of the joystick in the bottom position
AXO returns the calibrated zero gravity value of the x-axis accelerometer
AX1 returns the calibrated one gravity value of the x-axis accelerometer
AYO0 returns the calibrated zero gravity value of the y-axis accelerometer
AY1 returns the calibrated one gravity value of the y-axis accelerometer
AZO0 returns the calibrated zero gravity value of the z-axis accelerometer
AZ1 returns the calibrated one gravity value of the z-axis accelerometer

UL

OCT$(number [, chars])

Returns a string giving the octal (base 8) representation of 'number".

‘chars' is optional and specifies the number of characters in the string with
zero as the leading padding character(s).

FPEER

PEEK(BYTE addr%)
PEEK(SHORT addr%)
PEEK(WORD addr%)
PEEK(INTEGER addr%)
PEEK(FLOAT addr%
PEEK(VARADDR var)

PEEK(VARHEADER var)

Will return a byte or a word within the CPU’s virtual memory space.
BYTE will return the byte (8-bits) located at 'addr%'

SHORT will return the short integer (16-bits) located at ‘addr%'

WORD will return the word (32-bits) located at 'addr%'

INTEGER will return the integer (64-bits) located at ‘addr%'

FLOAT will return the floating point number (64-bits) located at ‘addr%'

VARADDR will return the address (32-bits) of the variable 'var' in memory.
An array is specified as var().

VARHEADER will return the address (32-bits) of the variable descriptor of
the variable var in memory. An array is specified as var()

Page 144

Colour Maximite 2 User Manual Page 144

PEEK(CFUNCADDR cfun)

PEEK(VAR var, toffset)

PEEK(VARTBL, +offset)

PEEK(PROGMEM, offset)
PEEK(BP n%)
PEEK(SP n%)

PEEK(WP n%)

CFUNADDR will return the address (32-bits) of the CFunction 'cfun’ in

memory. This address can be passed to another CFunction which can then
call it or used to accessed tit o read its contents.

VAR, will return a byte in the memory allocated to 'var'. An array is
specified as var().

VARTBL, will return a byte in the memory allocated to the variable table
maintained by MMBasic. Note that there is a comma after VARTBL.

PROGMEM, will return a byte in the memory allocated to the program.
Note that there is a comma after the keyword PROGMEM.

Note that 'addr%' should be an integer.

PEEK(bp n%) ' returns the byte at address n% and increments n% to point to
the next byte.
PEEK(sp n%) ' returns the short at address n% and increments n% to point to
the next short.

PEEK(wp n%) ' returns the word at address n% and increments n% to point
to the next word

il
Pl

Returns the value of pi.

FIN

PIN(pin)

Returns the value on the external 1/O “pin’. Zero means digital low, 1 means
digital high and for analog inputs it will return the measured voltage as a
floating point number.

Frequency inputs will return the frequency in Hz. A period input will return
the period in milliseconds while a count input will return the count since
reset (counting is done on the positive rising edge). The count input can be
reset to zero by resetting the pin to counting input (even if it is already so
configured).

This function will also return the state of a pin configured as an output.

Also see the SETPIN and PIN() = commands.

PIN(function)

Returns the value of a special function. ‘function' is a string (ie, it can be a
string variable or string constant). For example PRINT PIN("BAT").

It can be one of:

"BAT" The voltage of the backup battery.

"TEMP" The temperature of the ARM Cortex-M7 processor's core.

"DAC1" The output voltage of DAC1 (on the audio output).

"DAC2" The output voltage of DAC2 (on the audio output).

"SREF" The stored calibrated value of the internal reference voltage
measured with a supply of exactly 3.3V. This is
programmed into the chip during production.

“IREF” The measured value of the internal reference voltage. The

actual value of VREF+ can be calculated as:
3.3 * PIN(“SREF”) / PIN(“IREF")
and this can be used to set OPTION VCC.

FIAEL

PIXEL(X, y [,page_number])

Returns the colour of a pixel on the VGA monitor. X' is the horizontal
coordinate and 'y" is the vertical coordinate of the pixel. See the chapter
"Basic Drawing Commands" for a definition of the colours and graphics
coordinates. The optional parameter page_number specifies which page is to
be read. The default is the current write page. Set the page number to
FRAMEBUFFER to read from the framebuffer — see the FRAMEBUFFER
command

Page 145

Colour Maximite 2 User Manual Page 145

FPUKI

PORT((start, nbr [,start, nbr]...)

Returns the value of a number of 1/0 pins in one operation.

'start' is an 1/O pin number and its value will be returned as bit 0. 'start'+1
will be returned as bit 1, 'start'+2 will be returned as bit 2, and so on for 'nbr'
number of bits. I/O pins used must be numbered consecutively and any 1/O
pin that is invalid or not configured as an input will cause an error. The
start/nbr pair can be repeated up to 25 times if additional groups of input
pins need to be added.

This function will also return the state of a pin configured as an output. It
can be used to conveniently communicate with parallel devices like memory
chips. Any number of 1/0 pins (and therefore bits) can be used from 1 to the
number of 1/O pins on the chip.

See the PORT command to simultaneously output to a number of pins.

FPULSIN

PULSIN(pin, polarity)

or

PULSIN(pin, polarity, t1)

or

PULSIN(pin, polarity, t1,t2)

Measures the width of an input pulse from 1us to 1 second with 0.1us
resolution.

'pin' is the 1/O pin to use for the measurement, it must be previously
configured as a digital input. 'polarity" is the type of pulse to measure, if
zero the function will return the width of the next negative pulse, if non zero
it will measure the next positive pulse.

't1' is the timeout applied while waiting for the pulse to arrive, 't2' is the timeout
used while measuring the pulse. Both are in microseconds (us) and are optional.
If 't2" is omitted the value of 't1' will be used for both timeouts. If both 't1' and
't2" are omitted then the timeouts will be set at 200000 (ie, 100ms).

This function returns the width of the pulse in microseconds (us) or -1 if a
timeout has occurred. The measurement is accurate to £1 ps.

Note that this function will cause the running program to pause while the
measurement is made and interrupts will be ignored during this period.

RKAUD

RAD(degrees)

Converts 'degrees' to radians.

RLB

RGB(red, green, blue [, trans])
or
RGB(shortcut [, trans])

Generates an RGB true colour value.

'red', 'blue’ and 'green’ represent the intensity of each colour. A value of zero
represents black and 255 represents full intensity.

'shortcut’ allows common colours to be specified by naming them. The
colours that can be named are white, black, blue, green, cyan, red, magenta,
yellow, brown and grey or gray (USA spelling). For example, RGB(red) or
RGB(cyan).

There is also one special colour ‘notblack’, For any video mode this is the
darkest colour that is not treated as black by various graphics commands.

'trans' is the level of transparency for colour depths 4 and 12. It is optional
and defaults to 15 if not specified.

KIGH 1D

RIGHTS$(string$, number-of-
chars)

Returns a substring of ‘string$” with ‘number-of-chars’ from the right (end)
of the string.

RKNU

RND(number)
or
RND

Returns a pseudo-random number in the range of 0 to 0.999999. The
'number’ value is ignored if supplied.

The Colour Maximite 2 uses the hardware random number generator in the
ARM Cortex-M7 to deliver true random numbers. This means that the
RANDOMIZE command is no longer needed and is not supported.

SLIN

SGN(number)

Returns the sign of the argument 'number’, +1 for positive numbers, 0 for 0,
and -1 for negative numbers.

Page 146

Colour Maximite 2 User Manual Page 146

SIN

SIN(number)

Returns the sine of the argument 'number' in radians.

OSFALED

SPACES$(number) Returns a string of blank spaces 'number' characters long.

dF1

SPI(data) Send and receive data using an SPI channel.

or A single SPI transaction will send data while simultaneously receiving data
from the slave. ‘data’ is the data to send and the function will return the data

SPI2(data) . . i o - . .
received during the transaction. ‘data’ can be an integer or a floating point
variable or a constant.

D3P|?>I|Iqt|'|'|5() The SPRITE functions return information regarding sprites which are small

SPRITE(C, [#]n)

SPRITE(C, [#]n, m)

SPRITE(D ,[#]s1, [#]s2)

SPRITE(E, [#]n

SPRITE(H,[#]n)

SPRITE(L, [#]n)
SPRITE(N)
SPRITE(N,n)

SPRITE(S)

SPRITE(V,spritenol,spriteno2)

Page 147

graphic images on the VGA screen. These are useful when writing games.
See also the SPRITE commands.

Returns the number of currently active collisions for sprite n. If n=0 then
returns the number of sprites that have a currently active collision following
a SPRITE SCROLL command

Returns the number of the sprite which caused the “m”th collision of sprite
n. If n=0 then returns the sprite number of “m”th sprite that has a currently
active collision following a SPRITE SCROLL command.

If the collision was with the edge of the screen then the return value will be:
&HF1 collision with left of screen
&HF2 collision with top of screen
&HF4 collision with right of screen
&HF8 collision with bottom of screen

Returns the distance between the centres of sprites ‘s1” and ‘s2’ (returns -1 if
either sprite is not active)

Returns a bitmap indicating any edges of the screen the sprite is in contact
with: 1 =left of screen, 2=top of screen, 4=right of screen, 8=bottom of
screen

Returns the height of sprite n. This function is active whether or not the
sprite is currently displayed (active).

Returns the layer number of active sprites number n
Returns the number of displayed (active) sprites
Returns the number of displayed (active) sprites on layer n

Returns the number of the sprite which last caused a collision. NB if the
number returned is Zero then the collision is the result of a SPRITE
SCROLL command and the SPRITE(C...) function should be used to find
how many and which sprites collided.

Returns the vector from 'spritenol’ to 'spriteno2' in radians.

The angle is based on the clock so if 'spriteno2' is above 'spritenol’ on the
screen then the answer will be zero. This can be used on any pair of sprites
that are visible. If either sprite is not visible the function will return -1.

This is particularly useful after a collision if the programmer wants to make
some differential decision based on where the collision occurred. The angle

Colour Maximite 2 User Manual Page 147

SPRITE(T, [#]n)

SPRITE(V, [#]s01, [#]s2)

SPRITE(W, [#]n)

SPRITE(X, [#]n)

SPRITE(Y, [#]n)

is calculated between the centre of each of the sprites which may of course
be different sizes.

Returns a bitmap showing all the sprites currently touching the requested
sprite Bits 0-63 in the returned integer represent a current collision with
sprites 1 to 64 respectively

Returns the vector from sprite 's1' to 's2" in radians.

The angle is based on the clock so if 's2" is above 's1' on the screen then the
answer will be zero. This can be used on any pair of sprites that are visible.
If either sprite is not visible the function will return -1.

This is particularly useful after a collision if the programmer wants to make
some differential decision based on where the collision occurred. The angle
is calculated between the centre of each of the sprites which may of course
be different sizes.

Returns the width of sprite n. This function is active whether or not the sprite
is currently displayed (active).

Returns the X-coordinate of sprite n. This function is only active when the
sprite is currently displayed (active). Returns 10000 otherwise.

Returns the Y-coordinate of sprite n. This function is only active when the
sprite is currently displayed (active). Returns 10000 otherwise.

O I RZBIN

STR2BIN(type, string$ [,BIG])

Returns a number equal to the binary representation in “string$’.

‘type’ can be:

INT64 converts 8 byte string representing a signed 64-bit integer to an integer
UINT64 converts 8 byte string representing an unsigned 64-bit integer to an integer
INT32 converts 4 byte string representing a signed 32-bit integer to an integer
UINT32 converts 4 byte string representing an unsigned 32-bit integer to an integer
INT16 converts 2 byte string representing a signed 16-bit integer to an integer
UINT16 converts 2 byte string representing an unsigned 16-bit integer to an integer
INT8 converts 1 byte string representing a signed 8-bit integer to an integer
UINT8 converts 1 byte string representing an unsigned 8-bit integer to an integer
SINGLE converts 4 byte string representing single precision float to a float
DOUBLE converts 8 byte string representing single precision float to a float

By default the string must contain the number in little-endian format (ie, the
least significant byte is the first one in the string). Setting the third
parameter to ‘BIG’ will interpret the string in big-endian format (ie, the most
significant byte is the first one in the string).

This function makes it easy to read data from binary data files, interpret
numbers from sensors or efficiently read binary data from flash memory
chips.

An error will be generated if the string is the incorrect length for the
conversion requested

See also the function BIN2STR$

SUK
SQR(number) Returns the square root of the argument 'number'.

O KD

STR$(number) Returns a formatted string in decimal (base 10) representation of 'number'.
or If 'm' is specified sufficient spaces will be added to the start of the number to
STR$(number, m) ensure that the number of characters before the decimal point (including the
or ’ negative or positive sign) will be at least 'm' characters. If 'm'is zero or the

STR$(number, m, n)

number has more than 'm' significant digits no padding spaces will be added.
If 'm' is negative, positive numbers will be prefixed with the plus symbol and

Page 148

Colour Maximite 2 User Manual Page 148

or
STR$(number, m, n, c$)

negative numbers with the negative symbol. If 'm'is positive then only the
negative symbol will be used.

'n' is the number of digits required to follow the decimal place. If itis zero
the string will be returned without the decimal point. If it is negative the
output will always use the exponential format with 'n' digits resolution. If 'n’
is not specified the number of decimal places and output format will vary
automatically according to the number.

'c$' is a string and if specified the first character of this string will be used as
the padding character instead of a space (see the 'm' argument).

Examples:
STR$(123.456)
STR$(-123.456)
STR$(123.456, 1)
STR$(123.456, -1)
STR$(123.456, 6)

will return 123 .456"

will return "*-123 .456""

will return "*'123.456"

will return "'+123 .456""

will return ™' 123.456""
STR$(123.456, -6) will return ™ +123.456"
STR$(-123.456, 6) will return ™ -123.456"
STR$(-123.456, 6, 5) will return' -123.45600"
STR$(-123.456, 6, -5) will return "' -1.23456e+02""
STR$(53, 6) will return ™' 53"
STR$(53, 6, 2) will return ™' 53.00"
STR$(53, 6, 2,"*") will return "*****53 _00"

O IRKINLD

STRINGS$(nbr, ascii)
or
STRINGS$(nbr, string$)

Returns a string 'nbr' bytes long consisting of either the first character of
string$ or the character representing the ASCII value 'ascii' which is a
decimal number in the range of 32 to 126.

IAB

TAB(number)

Outputs spaces until the column indicated by 'number' has been reached on
the console output. The tab function will not work when printing to a file but
will behave like the SPACES$ function.

AN

TAN(number)

Returns the tangent of the argument 'number' in radians.

IEIVIPK

TEMPR(pin [,timeout])

Return the temperature measured by a DS18B20 temperature sensor
connected to 'pin' (which does not have to be configured).

The returned value is degrees C with a default resolution of 0.25°C. If there
is an error during the measurement the returned value will be 1000.

The time required for the overall measurement is 200ms and interrupts will
be ignored during this period. The optional parameter timeout can be used to
override the default (200mSec) to allow for slow devices. Alternatively the
TEMPR START command can be used to start the measurement and your
program can do other things while the conversion is progressing. When this
function is called the value will then be returned instantly assuming the
conversion period has expired. If it has not, this function will wait out the
remainder of the conversion time before returning the value.

The DS18B20 can be powered separately by a 3V to 5V supply or it can
operate on parasitic power. See the chapter "Special Hardware Devices" for
more details.

HIVIED

TIME$

Returns the current time based on MMBasic's internal clock as a string in the
form "HH:MM:SS" in 24 hour notation. For example, "14:30:00".

If the OPTION MILLISECONDS ON command has been used this function
will return the time including milliseconds as a decimal fraction of the
seconds. For example: "14:35:06.239".

To set the current time use the command TIME$ = .

Page 149

Colour Maximite 2 User Manual Page 149

HIVIER

TIMER Returns the elapsed time in milliseconds (eg, 1/1000 of a second) since reset.
This is a fractional floating point number with a resolution of 1ps.
The timer is reset to zero on power up or a CPU restart and you can also
reset it to any value by using TIMER as a command.

'ﬁg ﬁ\/l$(source$ [,mask$] This function can remove characters from the beginning or end of a string or

[, where/where$)) both. source$ is the input string. mask$ is a string containing a list of
character to be removed. If omitted it defaults to space. where/where$ can be
L, R, or B or a string beginning with L, R, or B to specify characters should
be removed from the left of the source, the right of the source or both. If
omitted defaults to L.

UULADED R

UCASE$(string$) Returns “string$’ converted to uppercase characters.

<7,LA|_(string$) Returns the numerical value of the ‘string$’. If 'string$' is an invalid number

the function will return zero.

This function will recognise the &H prefix for a hexadecimal number, &0
for octal and &B for binary.

Page 150

Colour Maximite 2 User Manual Page 150

Obsolete Commands and Functions

These commands and functions are mostly included to assist in converting programs written for Microsoft
BASIC. For new programs the corresponding modern commands in MMBasic should be used.

These commands may be removed in the future to recover memory for other features.

DHT22

Use HUMID

GOSUB target

Initiates a subroutine call to the target, which can be a line number or a label.
The subroutine must end with RETURN.

New programs should use defined subroutines (ie, SUB...END SUB).

IF condition THEN linenbr

For Microsoft compatibility a GOTO is assumed if the THEN statement is
followed by a number. A label is invalid in this construct.

New programs should use: IF condition THEN GOTO linenbr | label

IRETURN

Returns from an interrupt when the interrupt destination was a line number
or a label.

New programs should use a user defined subroutine as an interrupt
destination. In that case END SUB or EXIT SUB will cause a return from
the interrupt.

ON nbr GOTO | GOSUB
target[,target, target,...]

ON either branches (GOTO) or calls a subroutine (GOSUB) based on the
rounded value of 'nbr'; if it is 1, the first target is called, if 2, the second
target is called, etc. Target can be a line number or a label.

New programs should use SELECT CASE.

POS For the console, returns the current cursor position in the line in characters.
This command is now removed. Use MM.POS if the current cursor position
is required.

RETURN RETURN concludes a subroutine called by GOSUB and returns to the

statement after the GOSUB.

Page 151

Colour Maximite 2 User Manual Page 151

Appendix A
Serial Communications

Two serial ports are available for asynchronous serial communications labelled COM1: and COM2:. In addition,
if the serial console is disabled then that port is available as COM3..

After being opened the serial port will have an associated file number and you can use any commands that operate
with a file number to read and write to/from it. A serial port is also closed using the CLOSE command.

The following is an example:

OPEN '"'COM1:4800'" AS #5 “ open the first serial port with a speed of 4800 baud
PRINT #5, "Hello" “ send the string "Hello" out of the serial port
dat$ = INPUT$(20, #5) “ get up to 20 characters from the serial port

CLOSE #5 “ close the serial port

The OPEN Command

A serial port is opened using the command:

OPEN comspec$ AS #fnbr

“fnbr’ is the file number to be used. It must be in the range of 1 to 10. The # is optional.

‘comspec$’ is the communication specification and is a string (it can be a string variable) specifying the serial
port to be opened and optional parameters. The default is 9600 baud, 8 data bits, no parity and one stop bit.

It has the form "'COMn: baud, buf, int, int-trigger, 7BIT, (ODD or EVEN), INV, OC, S2"
where:

e ‘n’ is the serial port number for either COM1:, COM2 or COM3....

e ‘baud’ is the baud rate. This can be any value between 1200 (the minimum) and 1000000 (1MHz).
Default is 9600.

o ‘buf’ is the receive buffer size in bytes (default size is 256). The transmit buffer is fixed at 256 bytes.

e ‘int’ is a user defined subroutine which will be called when the serial port has received some data. The
default is no interrupt.

e ‘int-trigger’ sets the trigger condition for calling the interrupt subroutine. It is an integer and the
interrupt subroutine will be called when this number of characters has arrived in the receive queue.

All parameters except the serial port name (COMn:) are optional. If any parameter is left out then all the
following parameters must also be left out and the defaults will be used.

The following options can be added to the end of '‘comspec$'
o 'INV' specifies that the transmit and receive polarity is inverted. Default is non inverted.
‘OC’ will force the transmit pin to be open collector. The default is normal (0 to 3.3V) output.
e 'S2' specifies that two stop bits will be sent following each character transmitted. Default is one stop bit.
o '"7BIT" will specify that 7 bit transmit and receive is to be used. Default is 8 bits.

o ‘ODD’ will specify that an odd parity bit will be appended (8 bits will be transmitted if 7BIT is specified,
otherwise 9)

o ‘EVEN’ will specify that an even parity bit will be appended (8 bits will be transmitted if 7BIT is
specified, otherwise 9)

e 'DEP' will enable RS485 mode with a positive output on the COM1-DE pin
e 'DEN' will enable RS485 mode with a negative output on the COM1-DE pin

Input/Output Pin Allocation

When a serial port is opened the pins used by the port will be automatically set to input or output as required
and the SETPIN and PIN commands will be disabled for the pins. When the port is closed (using the CLOSE
command) all pins used by the serial port will be set to a not-configured state and the SETPIN command can
then be used to reconfigure them.

The connections for each COM port are shown in the I/O connector pinout diagrams in the beginning of this
manual. Note that Tx means an output from the Maximite and Rx means an input to the Maximite.

Page 152 Colour Maximite 2 User Manual Page 152

The signal polarity is standard for devices running at TTL voltages (for RS232 voltages see below). ldle is
voltage high, the start bit is voltage low, data uses a high voltage for logic 1 and the stop bit is voltage high.
These signal levels allow you to directly connect to devices like GPS modules (which generally use TTL
voltage levels).

When a serial port is opened MMBasic will enable an internal pullup resistor (to VVdd) on the Rx (receive data)
pin. This has a value of about 100K and its purpose is to prevent the input from floating if it is left
unconnected. Normally this is fine but it can cause a problem if you have an external resistor in series with the
Rx pin, in that case this resistor and the pullup resistor will form a voltage divider limiting how high or low the
voltage on the Rx pin can swing and that in turn might mean that the input signal is not recognised. The
solution is to use the command SERIAL PULLUP DISABLE to disable it.

Examples

Opening a serial port using all the defaults:
OPEN "COM2:"" AS #2

Opening a serial port specifying only the baud rate (4800 bits per second):
OPEN "COM2:4800" AS #1

Opening a serial port specifying the baud rate (9600 bits per second) and receive buffer size (1KB):
OPEN **COM1:9600, 1024 AS #8

The same as above but with two stop bits enabled:
OPEN **COM1:9600, 1024, S2™ AS #8

An example specifying everything including an interrupt, an interrupt level, inverted and two stop bits:
OPEN '""COM1:19200, 1024, ComintLabel, 256, INV, S2' AS #5

Reading and Writing

Once a serial port has been opened you can use any command or function that uses a file number to read from
and write to the port. Data received by the serial port will be automatically buffered in memory by MMBasic
until it is read by the program and the INPUT$() function is the most convenient way of doing that. When
using the INPUT$() function the number of characters specified will be the maximum number of characters
returned but it could be less if there are less characters in the receive buffer. In fact the INPUTS$() function will
immediately return an empty string if there are no characters available in the receive buffer.

The LOC() function is also handy; it will return the number of characters waiting in the receive buffer (ie, the
maximum number characters that can be retrieved by the INPUTS$() function). Note that if the receive buffer overflows
with incoming data the serial port will automatically discard the oldest data to make room for the new data.

The PRINT command is used for outputting to a serial port and any data to be sent will be held in a memory
buffer while the serial port is sending it. This means that MMBasic will continue with executing the commands
after the PRINT command while the data is being transmitted. The one exception is if the output buffer is full
and in that case MMBasic will pause and wait until there is sufficient space before continuing. The LOF()
function will return the amount of space left in the transmit buffer and you can use this to avoid stalling the
program while waiting for space in the buffer to become available.

If you want to be sure that all the data has been sent (perhaps because you want to read the response from the
remote device) you should wait until the LOF() function returns 256 (the transmit buffer size) indicating that
there is nothing left to be sent.

Serial ports can be closed with the CLOSE command. This will wait for the transmit buffer to be emptied then
free up the memory used by the buffers, cancel the interrupt (if set) and set all pins used by the port to the not
configured state. A serial port is also automatically closed when commands such as RUN and NEW are issued.

Interrupts
The interrupt subroutine (if specified) will operate the same as a general interrupt on an external 1/O pin.

When using interrupts you need to be aware that it will take some time for MMBasic to respond to the interrupt
and more characters could have arrived in the meantime, especially at high baud rates. For example, if you
have specified the interrupt level as 250 characters and a buffer of 256 characters then quite easily the buffer
will have overflowed by the time the interrupt subroutine can read the data. In this case the buffer should be
increased to 512 characters or more.

Low Cost RS-232 Interface

Page 153 Colour Maximite 2 User Manual Page 153

The RS-232 signalling system is used by modems, hardwired serial ports on a PC, test equipment, etc. It is the
same as the serial TTL system used on the Colour Maximite 2 with two exceptions:

e The voltage levels of RS-232 are +12V and -12V where TTL serial uses +3.3V and zero volts.
e The signalling is inverted (the idle voltage is -12V, the start bit is +12V, etc).

It is possible to purchase cheap RS-232 to TTL converters on the Internet but it would be handy if it was
possible to directly interface to RS-232.

The first issue is that the signalling polarity is inverted with respect to TTL. On the Colour Maximite 2 COM1.:
can be specified to invert the transmit and receive signal (the 'INV' option) so that is an easy fix.

For the receive data (that is the £12V signal from the remote RS-232 device) it is easy to limit the voltage using
a series resistor of (say) 10KQ and two diodes that will clamp the input voltage to the 3.3V rail and ground.
The input impedance of the 1/0 pin is very high so the resistor will not cause a voltage drop but it does mean
that when the signal swings to the maximum 12V it will be safely clipped by the diodes.

For the transmit signal (from the Colour Maximite 2 to the RS-232 device) you can connect this directly to the
input of the remote device. The output will only swing the signal from zero to 3.3V but most RS-232 inputs
have a threshold of about +1V so the signal will still be interpreted as a valid signal.

These measures break the rules for RS-232 signalling, but if you only want to use it over a short distance (a
metre or two) it should work fine.

Use this circuit:

4 1N4001 or similar

—

10K

RX A A A 3 RS-232 Device
Transmit Data

Colour Maximite 2
X A » RS-232 Device

Receive Data

Signal Ground

1N4001 x
or similar

And open COM1: with the invert option. For example:
OPEN "COM1: 4800, INV' AS #1

Page 154 Colour Maximite 2 User Manual Page 154

Appendix B
I2C Communications

The Colour Maximite 2 implements three 1°C channels, two on the rear 1/O connector and the third dedicated to
the front panel Wii connector. All operate in master mode (slave mode is not available).

There are four commands that can be used:

12C OPEN speed, Enables the 1°C module in master mode. The 12C command refers to channel 1
timeout while commands 12C2 and 12C3 refer to channels 2 and 3 using the same syntax.

‘speed’ is the clock speed (in KHz) to use and must be one of 100, 400 or 1000.

‘timeout’ is a value in milliseconds after which the master send and receive
commands will be interrupted if they have not completed. The minimum value is
100. A value of zero will disable the timeout (though this is not recommended).

12C WRITE addr, Send data to the 1°C slave device. The 12C command refers to channel 1 while
option, sendlen, commands 12C2 and 12C3 refer to channels 2 and 3 using the same syntax.
senddata [,sendata “addr’ is the slave’s 1°C address.

-] ‘option’ can be 0 for normal operation or 1 to keep control of the bus after the

command (a stop condition will not be sent at the completion of the command)

‘sendlen’ is the number of bytes to send.

‘senddata’ is the data to be sent - this can be specified in various ways (all values
sent will be between 0 and 255):

e The data can be supplied as individual bytes on the command line.
Example: 12C WRITE &H6F, 0, 3, &H23, &H43, &H25

¢ The data can be in a one dimensional array specified with empty brackets (ie,
no dimensions). ‘sendlen’ bytes of the array will be sent starting with the first
element. Example: 12C WRITE &H6F, 0, 3, ARRAY()

e The data can be a string variable (not a constant).
Example: 12C WRITE &H6F, 0, 3, STRINGS

12C READ addr, Get data from the 1°C slave device. The 12C command refers to channel 1 while
option, rcvlen, revbuf commands 12C2 and 12C3 refer to channels 2 and 3 using the same syntax.

‘addr’ is the slave’s 1°C address.
‘option’ can be 0 for normal operation or 1 to keep control of the bus after the
command (a stop condition will not be sent at the completion of the command)
‘rcvlen’ is the number of bytes to receive.
‘rcvbuf’ is the variable or array used to save the received data - this can be:

e A string variable. Bytes will be stored as sequential characters in the string.

¢ A one dimensional array of numbers specified with empty brackets. Received
bytes will be stored in sequential elements of the array starting with the first.
Example: 12C READ &H6F, 0, 3, ARRAY()

¢ A normal numeric variable (in this case rcvlen must be 1).

12C CLOSE Disables the master 12C module and returns the 1/0 pins to a "not configured" state.
They can then be configured using SETPIN. This command will also send a stop
if the bus is still held.
The 12C command refers to channel 1 while commands 12C2 and 12C3 refer to
channels 2 and 3 using the same syntax.

Page 155 Colour Maximite 2 User Manual Page 155

Following an I°C write or read command the automatic variable MM.I12C will be set to indicate the result of the
operation as follows:

0 = The command completed without error.
1 = Received a NACK response
2 = Command timed ou

7-Bit Addressing

The standard addresses used in these commands are 7-bit addresses (without the read/write bit). MMBasic will
add the read/write bit and manipulate it accordingly during transfers.

Some vendors provide 8-bit addresses which include the read/write bit. You can determine if this is the case
because they will provide one address for writing to the slave device and another for reading from the slave. In
these situations you should only use the top seven bits of the address. For example: If the read address is 9B
(hex) and the write address is 9A (hex) then using only the top seven bits will give you an address of 4D (hex).

Another indicator that a vendor is using 8-bit addresses instead of 7-bit addresses is to check the address range.
All 7-bit addresses should be in the range of 08 to 77 (hex). If your slave address is greater than this range then
probably your vendor has specified an 8-bit address.

1/O Pins

Refer to the rear panel I/O connector diagram at the beginning of this manual for the pin numbers used for the
I°C channels 1 and 2. Their signals are marked as data line (SDA) and clock (SCL). I°C channel 3 is routed to
the Wii connector on the front panel. When the 12C CLOSE command is used the I/O pins are reset to a "not
configured" state. Then can then be configured as per normal using SETPIN.

Both the data line (SDA) and clock (SCL) for all three 1°C ports have 10K pullup resistors installed on the
motherboard so external pullup resistors are not required. These should be considered if these pins are to be
used as general purpose 1/O pins.

When running the 1°C bus at above 100 kHz the cabling between the devices becomes important. Ideally the
cables should be as short as possible (to reduce capacitance) and also the data and clock lines should not run
next to each other but have a ground wire between them (to reduce crosstalk).

If the data line is not stable when the clock is high, or the clock line is jittery, the I°C peripherals can get

"confused" and end up locking the bus (normally by holding the clock line low). If you do not need the higher
speeds then operating at 100 kHz is the safest choice.

Example

As an example, the following program will read and display the current time (hours and minutes)
maintained by a PCF8563 real time clock chip connected to 1C channel 2:

DIM AS INTEGER RData(2) * this will hold received data
12C2 OPEN 100, 1000 " open the 12C channel

12C2 WRITE &H51, 0, 1, 3 " set the first register to 3
12C2 READ &H51, O, 2, RData() " read two registers

12C2 CLOSE " close the 12C channel

PRINT "Time is " RData(l) ":" RData(0)

Page 156 Colour Maximite 2 User Manual Page 156

Appendix C
1-Wire Communications

The 1-Wire protocol was developed by Dallas Semiconductor to communicate with chips using a single
signalling line. This implementation was written for MMBasic by Gerard Sexton.

There are three commands that you can use:
ONEWIRE RESET pin Reset the 1-Wire bus
ONEWIRE WRITE pin, flag, length, data [, data...] Send a number of bytes
ONEWIRE READ pin, flag, length, data [, data...] Get a number of bytes
Where:
pin - The I/O pin (located in the rear connector) to use. It can be any pin capable of digital I/0O.
flag - A combination of the following options:
1 - Send reset before command
2 - Send reset after command
4 - Only send/recv a bit instead of a byte of data

8 - Invoke a strong pullup after the command (the pin will be set high and open drain disabled)

length - Length of data to send or receive

data - Data to send or variable to receive.
The number of data items must agree with the length parameter.

And the automatic variable
MM.ONEWIRE Returns true if a device was found

After the command is executed, the 1/0 pin will be set to the not configured state unless flag option 8 is used.

When a reset is requested the automatic variable MM.ONEWIRE will return true if a device was found.
will occur with the ONEWIRE RESET command and the ONEWIRE READ and ONEWIRE WRITE
commands if a reset was requested (flag = 1 or 2).

This

The 1-Wire protocol is often used in communicating with the DS18B20 temperature measuring sensor and to
help in that regard MMBasic includes the TEMPR() function which provides a convenient method of directly

reading the temperature of a DS18B20 without using these functions.

Page 157 Colour Maximite 2 User Manual

Page 157

Appendix D
SPI Communications

The Serial Peripheral Interface (SPI) communications protocol is used to send and receive data between
integrated circuits. The command SPI refers to channel 1 and SPI2 refers to channel 2. SPI2 is not listed
below however it is available on the Colour Maximite 2 and has an identical syntax.

1/O Pins

The SPI OPEN command will automatically configure the relevant I/O pins on the rear 1/0O connector (listed at
the start of this manual). MISO stands for Master In Slave Out and because the Colour Maximite 2 is always
the master that pin will be configured as an input. Similarly MOSI stands for Master Out Slave In and that pin
will be configured as an output.

When the SPI CLOSE command is used these pins will be returned to a "not configured" state. They can then
be configured as per normal using SETPIN.

SP1 Open

To use the SPI function the SPI channel must be first opened. The syntax for opening the SPI channel is:
SPI1 OPEN speed, mode, bits

Where:

e ‘speed’ is the speed of the clock. This can be 25000000, 12500000, 6250000, 3125000, 1562500,
781250, 390625 or 195315 (ie, 25MHz, 12.5MHz, 6.25MHz, 3.125MHz, 1562.5KHz, 781.25KHz,
390.625KHz or 195.3125KHz). For any other values the firmware will select the next valid speed that is
equal or slower than the speed requested.

e 'mode’ is a single numeric digit representing the transmission mode — see Transmission Format below.
e 'bits' is the number of bits to send/receive. This can be 8, 16 or 32.
o |t is the responsibility of the program to separately manipulate the CS (chip select) pin if required.

Transmission Format

The most significant bit is sent and received first. The format of the transmission can be specified by the 'mode'
as shown below. Mode 0 is the most common format.

Mode Description CPOL | CPHA
0 Clock is active high, data is captured on the rising edge and output on the falling edge 0 0
1 Clock is active high, data is captured on the falling edge and output on the rising edge 0 1
2 Clock is active low, data is captured on the falling edge and output on the rising edge 1 0
3 Clock is active low, data is captured on the rising edge and output on the falling edge 1 1

For a more complete explanation see: http://en.wikipedia.org/wiki/Serial_Peripheral _Interface Bus

Standard Send/Receive
When the SPI channel is open data can be sent and received using the SPI function. The syntax is:
received data = SPl(data_to_send)

Note that a single SPI transaction will send data while simultaneously receiving data from the slave.
‘data_to_send’ is the data to send and the function will return the data received during the transaction.
‘data_to_send’ can be an integer or a floating point variable or a constant.

If you do not want to send any data (ie, you wish to receive only) any number (eg, zero) can be used for the
data to send. Similarly if you do not want to use the data received it can be assigned to a variable and ignored.

Page 158 Colour Maximite 2 User Manual Page 158

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Bulk Send/Receive
Data can also be sent in bulk:

SPI WRITE nbr, datal, data2, data3, .. etc

or
SP1 WRITE nbr, string$

or
SPI WRITE nbr, array()

In the first method 'nbr' is the number of data items to send and the data is the expressions in the argument list
(ie, 'datal’, data2' etc). The data can be an integer or a floating point variable or a constant.

In the second or third method listed above the data to be sent is contained in the 'string$' or the contents of
‘array()' (which must be a single dimension array of integer or floating point numbers). The string length, or the
size of the array must be the same or greater than nbr. Any data returned from the slave is discarded.

Data can also be received in bulk:
SPI READ nbr, array(Q)

Where 'nbr' is the number of data items to be received and array() is a single dimension integer array where the
received data items will be saved. This command sends zeros while reading the data from the slave.

SPI Close

If required the SPI channel can be closed as follows (the I/O pins will be set to inactive):
SP1 CLOSE

Examples

The following example shows how to use the SPI port for general 1/0. It will send a command 80 (hex) and
receive two bytes from the slave SPI device using the standard send/receive function:

PIN(10) = 1 : SETPIN 10, DOUT " pin 10 will be used as the enable signal
SP1 OPEN 5000000, 3, 8 speed is 5MHz and the data size is 8 bits

PIN(10) = O " assert the enable line (active low)
Jjunk = SPI1(&H80) " send the command and ignore the return
bytel = SPI(0) " get the first byte from the slave
byte2 = SPI1(0) " get the second byte from the slave
PIN(10) = 1 " deselect the slave

SPI1 CLOSE " and close the channel

The following is similar to the example given above but this time the transfer is made using the bulk
send/receive commands:

OPTION BASE 1 " our array will start with the index 1
DIM data%(2) " define the array for receiving the data
PIN(10) = 1 : SETPIN 10, DOUT " pin 10 will be used as the enable signal
SP1 OPEN 5000000, 3, 8 " speed is 5MHz, 8 bits data

PIN(10) = O " assert the enable line (active low)

SPI WRITE 1, &H80 " send the command

SP1 READ 2, data%() " get two bytes from the slave

PIN(10) = 1 " deselect the slave

SPI1 CLOSE " and close the channel

Page 159 Colour Maximite 2 User Manual Page 159

Appendix E
Sprites

The concept of the sprite implementation is as follows:

Sprites are full colour and of any size. The collision boundary is the enclosing rectangle.
Sprites are loaded to a specific number (1 to 64).

Sprites are displayed using the SPRITE SHOW command.

For each SHOW command the user must select a "layer". This can be between 0 and 10.
Sprites collide with sprites on the same layer, layer 0, or the screen edge.

Layer 0 is a special case and sprites on all other layers will collide with it.

The SCROLL commands leave sprites on all layers except layer 0 unmoved.

Layer 0 sprites scroll with the background and this can cause collisions.

There is no practical limit on the number of collisions caused by SHOW or SCROLL commands.
The SPRITE() function allows the user to fully interrogate the details of a collision.

A SHOW command will overwrite the details of any previous collisions for that sprite.
A SCROLL command will overwrite details of previous collisions for ALL sprites.

To restore a screen to a previous state sprites should be removed in the opposite order to which they were
written (ie, last in first out).

Because moving a sprite or, particularly, scrolling the background can cause multiple sprite collisions it is
important to understand how they can be interrogated.

The best way to deal with a sprite collision is using the interrupt facility. A collision interrupt routine is set up
using the SPRITE INTERRUPT command. Eg:

SPRITE INTERRUPT collision

The following is an example program for identifying all collisions that have resulted from either a SPRITE
SHOW command or a SCROLL command

" This routine demonstrates a complete interrogation of collisions

SUB

LOCAL INTEGER 1

collision

" First use the SPRITE(S) function to see what caused the interrupt
IF SPRITE(S) <> 0 THEN “"collision of specific individual sprite

"SPRITE(S) returns the sprite that moved to cause the collision
PRINT "Collision on sprite ", SPRITE(S)
process_collision(SPRITE(S))

PRINT

ELSE "0 means collision of one or more sprites caused by background move

" SPRITE(C, 0) will tell us how many sprites had a collision

PRINT "'Scroll caused a total of ", SPRITE(C,0)," sprites to have collisions"
FOR 1 = 1 TO SPRITE(C, 0)

" SPRITE(C, O, i) will tell us the sprite number of the “I”th sprite

PRINT "Sprite ", SPRITE(C, 0, i)

process_collision(SPRITE(C, 0, 1))
NEXT i
PRINT

ENDIF

END

SuB

Page 160 Colour Maximite 2 User Manual Page 160

" get details of the specific collisions for a given sprite
SUB process_collision(S AS INTEGER)

LOCAL INTEGER i, j
" SPRITE(C, #n) returns the number of current collisions for sprite n

PRINT "Total of " SPRITE(C, S) "™ collisions"
FOR 1 = 1 TO SPRITE(C, S)
" SPRITE(C, S, 1) will tell us the sprite number of the “I”th sprite
Jj = SPRITE(C, S, 1)
IF j = &HF1 THEN
PRINT "collision with left of screen”
ELSE IF j = &HF2 THEN
PRINT "collision with top of screen"
ELSE IF j = &HF4 THEN
PRINT "collision with right of screen"
ELSE IF j = &HF8 THEN
PRINT "collision with bottom of screen
ELSE
" SPRITE(C, #n, #m) returns details of the mth collision
PRINT "Collision with sprite ', SPRITE(C, S, i)
ENDIF
NEXT i
END SUB

Page 161 Colour Maximite 2 User Manual Page 161

Appendix F
Turtle Graphics

This release contains a very comprehensive turtle graphics implementation for all versions except the WebMite
RP2040 and WebMite RP2350.

The supported commands with “TURTLE * prepended are:

Movement Commands
FORWARD distance
BACK distance
LEFT [angle]
RIGHT [angle]

Position Commands
SET XY x,y
SET X x
SETYy
SET HEADING angle
HOME

Pen Control Commands
PEN UP
PEN DOWN
PEN COLOUR color
PEN WIDTH width

Arc and Curve Commands
ARC radius angle
ARCLEFT radius,angle

ARCRIGHT radius,angle
BEZIER cpl, cplangle, cp2, cp2angle, end, endangle

Basic Shape Commands
CIRCLE radius
DOT size
FCIRCLE radius

FRECTANGLE width,height
WEDGE radius start end

Fill Commands
FILL COLOUR color
FILL PATTERN pattern
NO FILL
FILL
BEGIN FILL
END FILL

Cursor Commands
SHOW TURTLE
HIDE TURTLE
CURSOR SIZE size

CURSOR COLOUR color

STAMP

Page 162

(FD) - Move forward by distance pixels

(BK) - Move backward by distance pixels

(LT) - Turn left by angle degrees, 90 degrees if not specified
(RT) - Turn right by angle degrees, 90 degrees if not

- Move to absolute position (X,y)

- Set X coordinate, keep Y

- Set Y coordinate, keep X

(SETH) - Set absolute heading (0=up, 90=right)

- Return to center (MM.HRES\2,MM.VRES\2) heading 0

(PU) - Lift pen (stop drawing)
(PD) - Lower pen (start drawing)
(PC) - Set pen color

(PW) - Set pen line width

- Draw arc with given radius and angle

(ARCL) - Draw arc turning left

(ARCR) - Draw arc turning right

- Draw Bezier curve with control points

- Draw circle at current position
- Draw filled dot (default size=5)
- Draw filled circle

(FRECT) - Draw filled rectangle
- Draw filled wedge/pie slice

(FC) - Set fill color and enable filling
(FP) - Set fill pattern (0-31)

- Disable filling

- Flood fill at current position

(BF) - Start recording polygon for fill
(EF) - End recording and fill polygon

(ST) - Show turtle cursor

(HT) - Hide turtle cursor

(CS) - Set cursor size

CC) - Set cursor color

- Draw a turtle at the current x,y position

Colour Maximite 2 User Manual Page 162

State Management Commands
RESET [show]
PUSH
POP

- clear screen and reset everything, show the turtle if show =1

- Save current position and heading to stack
- Restore position and heading from stack

The code includes the ability to fill circles,rectangles and polygons with a textured fill. Run it in mode 2 on a
RP2040 VGA system or mode 3 on a RP2350 VGA or HDMI.

Fill Patterns
0: Solid fill
: Checkerboard
: Vertical lines
: Horizontal lines
: Diagonal cross
: Diagonal stripes
: Crosshatch
: Fine diagonal
: Dense checkerboard
: Diagonal right medium
: Diagonal left medium

© 00 N O O B W DN -

e ol ol
w N P O

: Large checkerboard
: Dotted vertical

e el
o o1

: Grid

: Weave pattern

: Diamond

: Gradient diagonal

NN BB
B O © o

: Border/frame

: Vertical split

- Woven

: Sparse dots

: Diagonal very fine
- Arrow up

: Dense dots

: Chevron

: Diamond hollow
: Circle

: Circle filled

W W NN DNDNDNDNDNDNDN
P O © 0N O O & W IN

Page 163

: Vertical lines medium
: Horizontal lines medium

: Horizontal stripes tight

: Gradient diagonal reverse

Colour Maximite 2 User Manual

Page 163

Appendix G
Cyclic Redundancy Check (CRC)

The purpose of this description is not to explain or examine the mathematics behind CRCs but merely to
explain the benefits of using them and how they may be used in MMBasic.

A cyclic redundancy check (CRC) is a strong algebraic error-detecting code commonly used in digital networks
and storage devices to detect accidental changes to the data. Blocks of data have a short check value attached,
this is the CRC. A CRC is based on the remainder of a polynomial division of their contents. This technique
was invented by W.Wesley Peterson in 1961 and further developed by the CCITT.

Note: A CRC is not an error correction code it is just for error detection.

The advantages of using a CRC when sending or saving data are that it is a fast and efficient method for
detecting errors in data transmission and can detect errors that occur during transmission, and storage caused by
things such as noise, interference or distortion.

There are simpler methods of error detection including the use of ODD/EVEN parity for ASCII transmission
and the use of a checksum. A checksum is simply an addition of all of the bits transmitted in a block of data,
usually the carry bit is ignored and the resultant value is truncated to 8 or 16 bits which is appended to the end
of the block of data. Neither of these methods are particularly secure.

The more bits in the CRC, the more errors it will detect so a 16 bit CRC will be more secure than an 8 bit CRC
and so on. While a CRC will not catch all errors, it is much more secure than a simple checksum.

Using a CRC

Suppose we want to send a string via some medium. It could be data from your weather station which is located
up a pole which is sent via radio to your base station for example.

A simple example using the MODBUS CRC:

" A simple demonstration of using a CRC

" the data to send
a$=""123456789"

" calculate the CRC
b% = math (crcl6 a$,,&h8005,&hfFFfF,0,1,1)

" convert the CRC to a string
acrc$ = CHR$(b% AND &HFF) + CHR$((b%>>8) AND &HFF)
" add the CRC to the data to send
txd$ = a$ + acrc$

" then transmit the data

" here the data is printed for demonstration
print "The data to be transmitted"
printstr (txd$)

" check the recieved CRC and data

c% = math (crcl6é txd$,,&h8005,&hffff,0,1,1)
check$ = CHR$(c% AND &HFF) + CHR$((c%>>8) AND &HFF)
print
print "The CRC of the recieved data including the"
print "recieved CRC - the result should be zero"
printstr (check$)

" Print a string as HEX numbers (for debug)
sub PrintStr (b$)
for i =1 to len (b%)

print Hex$(asc (mid$(b$,i,1)),2); ", *;

Page 164 Colour Maximite 2 User Manual Page 164

next i
print
end sub

The CRC value is transmitted along with the data to the receiver. The receiver can verify the received data
by removing the CRC then recalculate the CRC and compare that with the received CRC Or, more simply,
recalculate the CRC for the whole received message and verify that the result is zero as demonstrated above.
If the CRC does not check then the receiver should reply with a negative acknowledgement and request a re-
transmission of the data.

The MMBasic CRC function:

MATH(CRCn data [,length] [,polynome] [,startmask] [,endmask] [,reverseln] [,reverseOut]

Please see the entry in the Functions table. Some of the parameters used in the calculation of the CRC are
not explained but their purpose may be made clear in the fullness of time. In the meantime here are some
examples for commonly used CRC calculations from Volhout ’s demonstration program that may be useful.

Page 165

" CCITT CRC16
CRC% = math (crcil6 data$,,,&hffff)

" MODBUS CRC16
CRC% = math (crcl6 data$, ,&h8005,&hffff,0,1,1)

" XMODEM CRC16
CRC% = math (crcl6 data$,)

" MAXIM CRC8
CRC% = math (crc8 data$,,&h31,,,1,1)

" standard CRC32
CRC% = math (crc32 data$, , ,&hFFFrfffrf, &hfFrffrrfff,1,1)

Demonstration program

" MATH CRC Demonstration program

" Based on the program "MATH CRC evaluation"
" written by Volhout

option base 1

"test string
a$=""123456789"

1%=1en (a$)

print "Test string "; a$
print

"convert test string to array
dim b%(1%)
for i=1 to 1% : b%(i)=asc (mid$(a$,i,1l)) : next i

"perform CRC validation
dim CRC%

"check CCITT CRC16

CRC% = math (crc16 b%(Q), 1%, ,&hFFFF)

print "CRC16-CCITT ; hex$(CRC%)

"check MODBUS CRC16

CRC% = math (crcl6 b%(), 1%,&h8005,&hffff,0,1,1)
print "CRC16-MODBUS "; hex$(CRC%)

"check XMODEM CRC16

Colour Maximite 2 User Manual Page 165

CRC% = math (crcl6 b%(), 1%)
print "CRC16-XMODEM "; hex$(CRC%)

"check MAXIM CRC8 (used in DALLAS single wire devices)
CRC% = math (crc8 b%(Q,1%,&h31,,,1,1)
print "CRC8-MAXIM "; hex$(CRC%)

"check standard CRC32
CRC% = math (crc32 b%(), 1%, ,&hFFFFFFff, &hFFFFFfFff,1,1)
print "CRC32 ": hex$(CRC%)

Some useful links:

The author of this CRC code https://github.com/RobTillaart/CRC

Explanations of CRCs http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html#chl
https://en.wikipedia.org/wiki/Cyclic_redundancy check

On line CRC calculators

http://zorc.breitbandkatze.de/crc.html

https://crccalc.com

https://www.lddgo.net/en/encrypt/crc

Page 166 Colour Maximite 2 User Manual

Page 166

https://github.com/RobTillaart/CRC
http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html#ch1
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://zorc.breitbandkatze.de/crc.html
https://crccalc.com/
https://www.lddgo.net/en/encrypt/crc

Appendix H
Regular Expressions in (L)INSTR

The alternate forms of the INSTR() and LINSTR() functions can take a regular expression as the search pattern.
The alternate form of the functions are:

INSTR([start],text$, search$ [,size])

LINSTR(text%(),search$ [,start] [,size]

In both cases specifying the size parameter causes the firmware to interpret the search string as a regular
expression. The size parameter is a floating point or integer variable that is used by the firmware to return the
size of a matching string. As implemented in MMBasic you need to apply the returned start and size values to
the MID$ function to extract the matched string. e.g.

IF start THEN match$=MID$(text$,start,size) ELSE match$=""" ENDIF

The syntax of regular expressions can vary slightly with the various implementations. This appendix is a
summary of the syntax and supported operations used in the MMBasic implementation.

AN Start of string * 0 or more (ablc) aorborc
$ End of string + 1 or more (...) group
\b Word Boundary (see Match Rules) ? Oorl [abc] Range (aorborc)
\B Not a word boundary {3} Exactly3 [*abc] Not (aorborc]
{3,} 3ormore [a-q] lower case letters ato q
{5} 5orless [A-Q] upper case letters Ato Q
{3,5} 34o0r5 [0-7] Digits from0Q0to 7
W to match ~ (caret) \w digits and letters plus _
\. tomatch. (dot) \W non -alpha
* tomatch * (asterix) \s white space \t \f\r \n \v spaces
\$ tomatch$ (dollar) \S non white space
\[tomatch [(left bracket) \d digits
\\ tomatch\ (backslash) \D non digits
\? to match ? (questmark) \XXX hex encoded byte
\(tomatch (
) o match) [Machingries
\+ tomatch + (plus) non special chars match themselves
\| to match pipe . (dot) matches any character
A word boundary is at start or end of
a string or where a \w Character has a
\W Character adjacent to it.

Limitations.

Anchors within a group are not supported.

e.g. (“hello) or (hello$) will not match “hello” at beginning or end of the line as expected.
However, anchors outside the group are ok. e.g. ~(hello) or (hello)$ will match.

Page 167 Colour Maximite 2 User Manual Page 167

Example expression to match an IP Address.
"[\d]+\.[\d]+\.[\d]+\.[\d]+"
Using Regular expressions with OPTION ESCAPE

When a regular expression is literally embedded in the INSTR or LINSTR function then any syntax
using the ‘\’ escape character is handled correctly without further escaping the backslash, whether
OPTION ESCAPE is in use or not. e.qg.

? instr("test123","\d",size)
The INSTR / LINSTR functions temporarily turn off OPTION ESCAPE while the regex expression is read.

However, if the Regex expression is passed as a string variable and OPTION ESCAPE is enabled when
you assign the regex expression to the variable, you must escape any backslash in the regex
expression. e.g.

S$:”\\d”
? instr(“test123",s$,size)

Page 168 Colour Maximite 2 User Manual Page 168

Appendix |
Special Keyboard Keys

MMBasic generates a single unique character for the function keys and other special keys on the keyboard.
These are shown in this table as hexadecimal and decimal numbers:

Keyboard Key Keg*g)(())de ‘(gagc?rggs
DEL 7F 127
Up Arrow 80 128
Down Arrow 81 129
Left Arrow 82 130
Right Arrow 83 131
Insert 84 132
Home 86 134
End 87 135
Page Up 88 136
Page Down 89 137
Alt 8B 139
F1/Shift F1 91 145
F2/Shift F2 92 146
F3/Shift F3 ** 93/B3 147/179
F4/Shift F4 ** 94/B4 148/180
F5/Shift F5 ** 95/B5 149/181
F6/Shift F6 ** 96/B6 150/182
F7/Shift F7 ** 97/B7 151/183
F8/Shift F8 ** 98/B8 152/184
F9 99 153
F10 9A 154
F11 9B 155
F12 9C 156
PrtScr/SysRq 9D 157
PAUSE/BREAK 9E 158
SHIFT_TAB oF 159
SHIFT_DEL A0 160
SHIFT_DOWN_ARROW Al 161
SHIFT_RIGHT_ARROW A3 163

** indicates also work for VT100 emulators

For an attached USB keyboard, if the shift key is simultaneously pressed with function keys F1 to f12 then 20
(hex) is added to the code (this is the equivalent of setting bit 5). For example Shift-F3 will generate B3 (hex).
For example Shift-F10 will generate BA(hex).

The shift modifier only works with the function keys F1 to F12; it is ignored for the other keys except TAB,
DEL, DOWN_ARROW and RIGHT_ARROW as identified above.

MMBasic will translate most VT100 escape codes generated by terminal emulators such as Tera Term and
Putty to these codes (the shift modifier only works for F3-F8). This means that a terminal emulator operating
over a USB or a serial port opened as console will generate the same key codes as a directly attached keyboard.

Page 169 Colour Maximite 2 User Manual Page 169

Appendix J
CAN Support

The CMM2 MMBasic exposes the native support for CAN provided by the STM32H743 chip as the MMBasic
CAN command.

A CAN transceiver such as the SN65HVD230 CAN
Transceiver is required to interface the actual physical
CAN bus. It connects to 3.3V and GND plus the
nominated CAN Tx and CAN Rx pins on the
ARMmite. The CANL and CANH connectors go to the
physical CAN bus. You can exercise the CAN
command in loopback mode without having the
transceiver attached.

This primer has a lot of good information if you are new to CAN.

The STM32H743 chip supports both the Classical CAN frame type and also the newer CAN FD (CAN Flexible
Data-rate) frame type. The improvements are:

CAN FD supports up to 64 data bytes per data frame vs. 8 data bytes for Classical CAN.

CAN FD supports dual bit rates: The nominal (arbitration) bit-rate limited to 1 Mbit/s as in Classical CAN -
and the data bit-rate, which depends on the network topology/transceivers.

CAN FD uses an improved cyclic redundancy check (CRC) and the "protected stuff-bit counter”, which lower
the risk of undetected errors.

See this link can-fd-flexible-data-rate-intro for an introduction to CAN FD

The following MMBasic commands provided access to the CAN controller in the STM32H743 chip. There are
some variations to the syntax between Classical CAN and CAN FD.

These common parameters apply to their use in the following commands.

Parameter Description

id, id1, id2 These refer to either an 11bit (0-7FF) or 29bit (0-1FFFFFFFF) identifier for a CAN Frame.
id2 may also refer to a bit mask in the CAN FILER command.

eid 0 indicates 11bit id(STDID) is used/expected, 1 indicates a 29bit id (EXTID) is used/expected
rtr Indicates a Remote Frame. i.e. dlc is 0 and no data. These are not used much any more.

dic Indicates the size of the data in the CAN message. (0-8) (Classical Frame Type)

msg contains 8 bytes of data, only those indicated by dic are valid, the rest are set to 00.

ret Is the return value for the command.

CAN OPEN index,speed,mode

This command opens the CAN interface indicated by index. This configures the CAN based on predefined pin
allocations as shown below.

Index | Pins | CAN Rx | CAN Tx Notes

1 100 PDO/81 PD1/82
144 PDO/114 | PD1/115

2 100 PB8/95 | PB9/96 Shares 12C pins
144 PB8/139 | PB9/140 Shares 12C pins

3 100 PB12/51 | PB6/92 Shares COM3 pins
144 PB12/73 | PB13/74 Shares COM3 pins

Page 170 Colour Maximite 2 User Manual Page 170

https://www.keil.com/download/files/canprimer_v2.pdf
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro

The speed indicates the desired CAN speed. Allowed values are O(special case),125000,250000,500000 and
1000000. The sampling point is set to 80%. The speed is not directly given to the CAN hardware, a set of
parameters is provided that will achieve the desired CAN speed and sample point.

- - daramadarne Far ENCAR el Eraniior AL~ BT ok ok ok ok ok ok ok o ok ok ok kK ok o
Bus 1iming Parameters 0 DCAN C(Clock equency 40 Z on H/

omlinal samplile point oYa DATA sample point at bVk

This short form of the CAN OPEN opens the CAN with a Frame Type of Classical.
To set a different speed for Classical CAN or use CAN FD the special case 0 must be used and the syntax as
described below is required to specify the parameters to obtain the desired speed, frame type and sample points.

The mode parameter determines the mode to be configured.

Mode | Operation Notes
Mode
0 Normal Normal operation
1 Internal This mode can be used for a loopback test. No data is placed on or
Loop Back received from the physical CAN Bus, however internally the transmitted
data is also seen as received data. The transceiver does not need to be
attached.
2 External This mode can be used for a loopback test. The transmitted data is also
Loop Back placed on the CAN Bus and seen by other nodes if the transceiver is
attached and connected to the CAN Bus.
3 Bus This mode does not place data on the physical CAN Bus, but does receive
Monitoring data from the CAN Bus. Can be used to monitor a live system.

In Normal mode the CAN sends and reads messages via the CAN bus using the attached CAN transceiver. It
does not see its own messages. In Loop Back mode the CAN sees its own messages as if they were received
from the CAN bus. The CAN transceiver does not need to be attached. This mode is useful for
testing/developing and checking your filters work as expected. In this mode no messages are placed on or
received from the CAN bus if it is attached.

The CAN OPEN command also sets a default Global Filter that accepts all messages into the FIFOO buffer.
This will start as soon as a CAN START command is issued. If you want to apply alternate filters to restrict
what messages are accepted you enter them after the CAN OPEN command and before the CAN START
command.

The following long forms of the CAN OPEN command used when the speed is set to 0, allows the user to
provide the prescaler, segmentl, segment2 and SJW (SyncJumpWidth) values that allow the detailed selection
of the speed and sampling point. The base clock speed is 40MHz and this online calculator allows the
determination of the values for various CAN speeds and sampling points. Bit Timing Calculator for CAN FD

The syntax below is used to set a Frame Type of Classical CAN to a desired speed and sample point.
CAN OPEN index,0,mode,prescaler,segl,seg2,sjw

The syntax below is used to set a Frame Type of FD CAN to a desired speed and sample point, it also defines
additional parameters to set the speed and sample point of the data segment, also sets whether Bit Rate
Switching is used and the data size to be used in the FD CAN frame. (Can be 8,12,16,20,24,32,48 or 64)

CAN OPEN index,0,mode,prescaler,segl,seg2,sjw,brs,dsize,dprescaler,dsegl,dseg2,dsjw
The parameters prescaler,segl,seg2,sjw,dprescaler,dsegl,dseg2,dsjw are the values obtained from the online
Bit Timing Calculator for CAN FD.
brs indicates whether Bit Rate Switching is used. i.e. 0 or 1

Page 171 Colour Maximite 2 User Manual Page 171

https://kvaser.com/support/calculators/can-fd-bit-timing-calculator/

dsize indicates the maximum data size. 8 to 64

CAN FILTER GLOBAL, id, eid, idr, eidr
The Global filter determines how each of the possible four types of CAN messages are handled.
id and eid respectively apply to STDID and EXTID messages. They determine what happens to messages that
do not match any filter after all the filters are checked. idr and eidr determine whether remote frames (i.e. rtr=1)
are accepted. They can have values as below.

id and eid (normal frame rtr=0) idr and eidr (remote frames i.e. rtr=1)

0 = Accept unmatched and pass to RxFIFOO0 0 = Pass to filters for possible matching.

1 = Accept unmatched and pass to RxFIFO1 1 = Reject message, don’t attempt matching.
2 = Reject message

When a CAN OPEN command is issued a default Global Filter is set so that all messages are accepted to
RxFIFOL. i.e. the equivalent of CAN FILTER GLOBAL 1,1,1,1

CAN FILTER index, eid, type, config, idl, id2
Filters are used to let the CAN hardware do the work to discard message you are not interested in, without
using the MMBasic resources to analyse them. There are 32 filters configured for each of STDID and EXTID.
They are tested in order of the index.
index is the filter number 0-31, these are applied in order.
eid is O for STDID filters and 1 for EXTID filters.
type is the filter type.
0 is a range filter matching ids in the range id1 to id2.
1 is a filter containing two IDs (id1, id2) to be matched.
2 is a classic filter id1 is the filter and id2 is the mask.
3 is a range filter but the eid bit is ignored and either STDID or EXTID are accepted.
config values,
0 will disable the filter, i.e. its ignored.
1 will accept a matched message into Rx FIFOO.
2 will accept a matched message into Rx FIFO1.
3 will reject the message.
The following filter will accept STDID messages with ids 235-300 into FIFOO.
CAN FILTERDO, 0, 0, 1, &H235, &H300

CAN START
After the CAN is configured and the filters are set the CAN START command tells the CAN to start accepting
messages and to accept messages to send. The CAN START command MUST be issued to start operation.

CAN STOP
The CAN STOP command can be issued to stop sending and receiving messages. You could issue this
command if you wanted to pause the reception of messages.

CAN SEND id, eid, rtr, dlc, msg, ret “Classical CAN
CAN SEND id, eid, rtr, dlc, msg(),ret “CAN FD
This command places a message in the next available transmit buffer and it to be sent in order. There are 32
transmit buffers configured, so there is no need to configure a queue in MMBasic. If no free buffer is available
then the ret value is 1.
If Frame Type of CAN FD is used then:
If brs=1 in the CAN OPEN command Bit Rate Switching will be used.
msg() must be a suitably dimension array for the data e.g. INTEGER msg(7) for 64 bytes.
dlc must not exceed the datasize set in the CAN OPEN command,
dlc can have values 0-8,12,16,20,24,32,48 or 64

CAN READ fifo, id, eid, rtr, dlc, msg, fmi, ret “Classical CAN
CAN READ fifo, id, eid, rtr, dlc, msg(),fmi, ret “CAN FD
This command reads a message from either FIFOO or FIFO1 depending on the value of fifo and populates id,
eid, rtr. dlc ,msg and fmi with the details from the received CAN Frame. Each of the FIFO queues is
configured with 32 buffers, so there is no need to configure a queue within MMBasic.
If Frame Type of CAN FD is used then:
msg() must be a suitably dimension array. e.g. INTEGER msg(7) for 64 bytes.

Page 172 Colour Maximite 2 User Manual Page 172

dlc must not exceed the datasize set in the CAN OPEN command.
dlc can expect values 0-8,12,16,20,24,32,48 or 64

ret is 0 if no messages are available else the number of messages available. The application needs to
continually call this command in the main DO:LOOP as this implementation does not use interrupts and
expects that messages to be polled. Only one message is retrieved for each CAN READ command.

fmi is the Filter Match Index. It indicates which filter matched the message. The fmi is the filter number used
when adding the filter. There are two numbering sequences numbered sequentially starting from 0 for each of
STDID and EXTID filters. Using the fmi is an alternate method of analysing the incoming message. i.e. know
which filter matched it to see what to do with it. The typical method is to analyse the ID to identify a particular
message.

CAN CLOSE
This command closes the CAN and releases the pins.

If you are implementing a CAN system it is useful to be able to uniquely identify a node e.g. serial no.
MM.INFO(ID) will return a unique 96bit ID for the MMBASIC chip as a hexidecimal string. This, whilst
guaranteed to be unique is too long to easily pass in a single CAN message.

MM.INFO(ID48) will return an integer with a 48 bit hash of this 96 bit ID which while not guaranteed to be
unique will most probably be unique within any MMBasic systems you have. This can be placed in 6 bytes of
an CAN message to identify a node and have two bytes left for the return of an allocated shorter node number
to be used within the system.

Page 173 Colour Maximite 2 User Manual Page 173

Appendix K
Loading the Firmware

The ARM Cortex-M7 processor includes its own programmer/bootloader so the Colour Maximite 2 firmware
can be easily loaded via USB using a personal computer or laptop (special hardware is not needed). Just follow
these steps. Note that the same firmware file will work on either the Generation 1 or 2 versions of the Colour
Maximite 2 (the hardware is automatically detected).

If you have a version using the Waveshare CPU board:

0 Plug the Waveshare CPU board into its position on the motherboard.
0 Remove all the jumpers on the Waveshare CPU board.

0 Set the power switch to "5VIN"

0 Set the BOOT CONFIG switch to "SYSTEM"

If you have a version without the Waveshare module (ie, the Generation 2 desugn) the programming function is
provided by a set of three jumper pins labelled “PGM” and “RUN”. Place a jumper on the common and
“PGM?” pins.

Make sure that the Type-B USB power cable to the Colour Maximite is disconnected.

Using a USB Type-A to Type-A cable connect the USB Keyboard port on the Colour Maximite 2 to a USB
port on your desktop computer. This will power up the Colour Maximite regardless of the position of the
power switch. You should also hear a sound from your computer as it connects to the Colour Maximite.

Go to https://www.st.com/en/development-tools/stm32cubeprog.html

and download the STM32CubeProgrammer software. This is free software but STM do require you to have an
STM account or provide your name and email address. They will email you a link to download the software.
Then install this software on your computer (Windows, Linux and macOS are supported).

Run the STM32CubeProgrammer software on > Ed A ¥ XK AYS
your computer. On the top right of the program :

window select USB as the communications
method. If the program does not recognise the

USB connection click on the small blue circle to T

the right of the Port drop down list to refresh the p——————

entry. Your screen should look like the i . .
. . . USE confi o
illustration on the right (the USB port number - e

Senal number 100364500000

Click on the "Connect" button. You should then
see a series of messages as shown in the
screenshot below finishing with the message
"Data read successfully”. Any messages in red
will indicate an error.

Log

U7 03152 ¢ FW VErSTONM ¢ UXOLITd
07:04:52 : Device ID : Ox0450

D7 :04:53 : UPLOADING OPTION BYTES DATA ...
07:04:53 : Bank : Ox00

07:04:53 : Address : Ox5200201c

07:04:53 : Size : 308 Bytes

D7 :04:53 : UPLOADING ...

07:04:53 : 5ize : 1024 Bytes

07:04:53 : Address : 0x8000000

07:04:53 : Read progress:

07:04:53 : Time elapsed during the read operation i1s: 00:00:00.017

VI Q@

Page 174 Colour Maximite 2 User Manual Page 174

https://www.st.com/en/development-tools/stm32cubeprog.html

4
Click on the download button () on the left side of the STM32CubeProgrammer window and the
software will switch to the "Erasing and Programming" mode as shown below.

Use the "Browse button" to select the firmware file (it will have an extension of .bin).

Tick the "Verify programming" checkbox.

Finally, click on the "Start Programming" button.

L Progr

Download

File path

[[EMM2V5.05.01b51.bin

Start address | Ox08000000

|:| Skip flash erase before programming

Werify pregramming

|:| Run after programming

Start Programming

The STM32CubeProgrammer software will then program the firmware into the flash memory on the ARM
Cortex-M7 in the Colour Maximite 2 (the STM32CubeProgrammer software calls this "downloading"). After a
short time a dialog box will pop up saying that "File download completed”. Do not do anything at this point as
the software will then start reading back the firmware programmed into the flash. When this has completed
successfully another dialog box will pop up saying "Download verified successfully" as shown below.

The whole operation will take under a minute and any messages in red will indicate an error.

Automatic Mode
[| Full chip erase

Deownload file

07:08:13 : Erasing
07:08:14 : erasing
07:08:16 : erasing
07:08:17 : erasing
07:08:18 : erasing
07:08:18 : erasing

Page 175

O TUEILY EI"B.S‘!H'Q"

o File download complete

3 0x08080000

}0000
{0000
10000
10000
oK | Joooo

] 08120000

|" | Option bytes commands

MEMGTY COrFeEsponaTng To |

internal memory sectors

sector 0000 @: OxO0B00000UTOME

[I] Message

o Download verified successfully

X k0000
50000

sector 0001 @: Ox0B020000 done
sector 0002 @&: Ox08040000 done
sector 0003 @: Ox0B060000 done
sector 0004 @: Ox08080000 done

07:08:18 : Download in Progress:

07:08:23 : Time elapsed during download operation: 00:00:09,273
07:08:23 : Verifying ...
07:08:23 : Read progress:

Colour Maximite 2 User Manual

Page 175

Then:

o Dismiss all the dialog boxes and close the STM32CubeProgrammer software.

0 On the Waveshare module set the BOOT CONFIG switch to "Flash” or on versions without the
Waveshare module the jumper should be between the common and the “RUN” pins.

0 Remove the USB Type-A to Type-A cable from the USB Keyboard port.

0 Plug in the VGA monitor and USB keyboard.

0 Plug the Colour Maximite into power and set the front panel power switch to ON.

On power up you should now see on the VGA monitor the Maximite logo and the version number of the
firmware that you have just loaded.

Colour Maximite 2
MMBazic Version 5,05,01b56
Copyright 2011-2019 Geoff Graham
Copyright 2016-2019 Peter Mather

If your monitor remains blank check that you are not still in programming mode (ie, reset the BOOT CONFIG
switch or the programming jumper). If you do not have a VGA monitor you can use the serial console (over
USB) to check the firmware installation. This is described in the section Hardware Features and Serial
Console in this manual.

When MMBasic is first loaded it will prompt for the keyboard type, the screen type and the date/time. On
subsequent firmware upgrades MMBasic will preserve these settings (in addition to OPTION RTC
CALIBRATE) and will not prompt for them again. These can be changed later using the relevant OPTION
commands.

If you wish to load another version of the firmware (either earlier or later) this can be done by repeating the
steps above.

Alternative Method

An alternative method of loading the firmware is to use serial transfer over USB. To do this you must first
install the serial over USB driver on your desktop computer as described in the section Hardware Features and
Serial Console in this manual.

If you have a version using the Waveshare CPU board:

0 Remove all the jumpers on the Waveshare CPU board.
0 Set the power switch to "5VIN"
0 Set the BOOT CONFIG switch to "System"

If your version does not use the Waveshare CPU board:

0 Place a jumper between the common and “PGM?” pins on the mainboard.

Then:

0 Connect your desktop computer to the USB Type-B connector on the Colour Maximite.
0 Set the front panel power switch to ON and/or press the reset button on the Waveshare CPU board.

@ Portable Devices
This should power up the Colour Maximite which will then ~ & Ports (COM & LPT)
connect to your desktop computer via USB. — roabia
In Windows the connection will appear in Device Manager as
"USB Serial Port" as illustrated on the right (the COM number EEE=SETI AL (COMT)
will probably be different): i WCH PCI Express-SERIAL (COM2)
™ Print queues

Page 176 Colour Maximite 2 User Manual 1 Processors Fage Lio

Install the STM32CubeProgrammer software on your computer as described above.

Run the software and select UART in the top right corner
(as illustrated on the right). Then select the correct COM
port number as reported in the Windows Device Manager.
Finally make sure that the baudrate is set to 115200 baud ™

and the parity set to even: UART configuration
From then on the process is the same as that described
above when using a direct USB connection via the
keyboard port:

Click on "Connect".
Select "Erase & Programming" mode. Parity
Browse for the firmware file.
Tick the "Verify programming" checkbox. Data bits
Click on "Program".

Port COomM11
Baudrate 115200

Even

©Oo0oo0o0Oo

Stop bits

The whole operation will take about 5 minutes.

Note that after the initial firmware has been loaded you
can use the UPDATE FIRMWARE command to place the
ARM Cortex-M7 into download mode (equivalent to setting the BOOT CONFIG switch to "SYSTEM or
jumper to “PGM”) thereby avoiding opening the case.

Flow control

When the programming/verify has completed set the BOOT CONFIG switch to "Flash" on the CPU board (or
return the jumpers to the “RUN” position) and press the RESET button.

Third Method

If you have a version using the Waveshare board It is also possible to program the firmware using the micro
USB connector on this board. This method is not recommended as the Waveshare module must be removed to
access this connector and doing this too many times will inevitably damage the module’s pins. However, this is
a handy method of testing the Waveshare board - if you can load the firmware without error it is a good
indication that the module is working correctly.

To use this method remove the Waveshare CPU module from the motherboard, place shorting jumpers on all
header pins except PA9-VBUS, set the power switch to "USB” and the BOOT CONFIG switch to "SYSTEM".
Plug a USB cable into the micro USB connector on the top of the module and the other end into your desktop
computer - both LEDs on the module should illuminate and it should connect to your computer.

Then, using the steps listed for loading the firmware via the USB keyboard port, load and verify the Colour
Maximite 2 firmware using this USB cable and your desktop computer.

Linux and the Raspberry Pi

Loading the firmware from a Linux computer and/or the Raspberry Pi has some special considerations and
these are explained here: https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12171

Page 177 Colour Maximite 2 User Manual Page 177

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=12171

	Introduction
	Quick Start Tutorial
	Command Prompt
	Your First Program
	Something More Complicated

	Colour Maximite 2 Generation 1
	External Oscillator
	Mouse Interface

	Colour Maximite 2 Generation 2
	Mouse Interface
	Power Switch Orientation
	High Accuracy Real Time Clock
	ESP-01 Module

	Hardware Features
	STM32H743IIT6 Cortex-M7 32-bit RISC CPU
	VGA Monitor Connector
	USB Keyboard Connector
	Power & Serial Console Connector
	Mouse Support
	Audio Connector
	Power & SD Card Activity LEDs
	SD Card Connector
	External I/O connector
	Wii Nunchuk and Wii Classic Connector
	Temperature Sensor
	IR Receiver
	Firmware Upload Select
	Backup Battery
	Reset Switch

	Using MMBasic
	Commands and Program Input
	Editing the Command Line
	Console Keyboard/Display
	Keyboard Shortcuts
	Line Numbers and Program Structure
	All Programs Are Run From the SD Card
	Status Line
	Running Programs
	Expressions
	Standards and Compatibility
	Saved Variables
	Timing
	Watchdog Timer
	PIN Security
	The Serial Console
	Resetting MMBasic

	File Manager
	Mouse Support

	Full Screen Editor
	Mouse Support
	Colour Coded Editor Display
	Serial Console
	Memory Usage

	Variables and Expressions
	Variables
	Constants
	OPTION DEFAULT
	OPTION EXPLICIT
	DIM and LOCAL
	STATIC
	CONST
	Special Characters in Strings
	Expressions and Operators
	Mixing Floating Point and Integers
	64-bit Unsigned Integers

	Subroutines and Functions
	Subroutines
	Local Variables
	Functions
	Passing Arguments by Reference or by Value
	Passing Arrays
	Early Exit
	Recursion
	Examples

	Graphics Functions
	Screen Coordinates
	Read Only Variables
	Colours
	Fonts
	Drawing Commands
	Example of Basic Graphics
	Rotated Text
	Transparent Text
	Displaying Images
	Advanced Graphics Tutorial
	GUI Controls
	3D Engine

	SD Card Support
	Program Management Commands
	File Access Within a Program
	File and Directory Management
	Play Audio Files
	Load and Save Images
	Sequential File Access
	Random File Access

	Audio Output
	Playing WAV, MP3 and FLAC Files
	Background Music
	Generating Sine Waves
	Specialised Audio Output
	Using PLAY
	Utility Commands

	Using the I/O pins
	Digital Inputs
	Analog Inputs
	Counting Inputs
	Digital Outputs
	Pulse Width Modulation
	Interrupts

	Special Device Support
	Infrared Remote Control Decoder
	Infrared Remote Control Transmitter
	Measuring Temperature
	Measuring Humidity and Temperature
	Measuring Distance
	WS2812 Support
	Hobbytronic Mouse Support
	CAN Support

	Game Playing Features
	VGA Resolution, Colour Depth and Pages
	Scrolling and Sprites
	Displaying Images
	Fonts
	Playing Audio
	Keyboard Keys
	Wii Nunchuk and Classic Controllers

	Porting Programs
	Variables
	Floating Point
	Graphic Commands
	Fonts
	BLIT
	Sprites
	SOUND and TONE
	SD Card and File Related Commands
	Special Devices
	CONFIG Commands
	Error Handling
	Random Number Generator

	Long Strings
	Long String Variables
	Long String Commands
	Long String Functions

	MMBasic Characteristics
	Implementation Characteristics
	Compatibility
	MMBasic Firmware Memory Map for the CMM2 Implementation

	Predefined Read Only Variables
	Detailed Listing
	MM.CMDLINE$
	MM.DEVICE$
	MM.ESC
	MMERRNO/MMERRMSG$
	MM.FLAGS
	MM.FONTHEIGHT/WIDTH
	MM.HEIGHT/MM.WIDTH
	MM.HPOS/MM.VPOS
	MM.HRES/MM.VRES
	MM.I2C
	MM.ONEWIRE
	MM.POS
	MM.VER
	MM.WATCHDOG
	MM.INFO()
	MM.INFO$()

	Operators
	Numeric Operators (Float or Integer)
	String Operators

	Options
	Detailed Listing
	OPTION ANGLE
	OPTION AUTORUN
	OPTION Y_AXIS
	OPTION BASE
	OPTION BASELINE
	OPTION BAUDRATE
	OPTION BREAK
	OPTION COLOURCODE
	OPTION CONSOLE PORT
	OPTION CONSOLE
	OPTION CRLF
	OPTION DEFAULT
	OPTION DEFAULT MODE
	OPTION DS3231
	OPTION ESCAPE
	OPTION EXPLICIT
	OPTION EDIT FONT
	OPTION FLASH
	OPTION F11
	OPTION F12
	OPTION F15
	OPTION F16
	OPTION F19
	OPTION F20
	OPTION HORIZONTAL OFFSET
	OPTION KEYBOARD REPEAT
	OPTION LEGACY
	OPTION LIST
	OPTION MAXCTRLS
	OPTION MILLISECONDS
	OPTION MOUSE
	OPTION OVERCLOCK
	OPTION PIN
	OPTION PROFILING
	OPTION RAM
	OPTION RESET
	OPTION RTC CALIBRATE
	OPTION SEARCH PATH
	OPTION SLEEP
	OPTION SD TIMING
	OPTION SERIAL PULLUP
	OPTION STATUS
	OPTION TAB
	OPTION USBKEYBOARD
	OPTION VCC
	OPTION VGA OUTPUT

	Commands
	Detailed Listing
	‘ (single quotation mark)
	? (question mark)
	* (asterix)
	#COMMENT
	#DEFINE
	#INCLUDE file$
	#MMDEBUG
	ADC
	ARC
	ARRAY
	AUTOSAVE [N] file$
	BEZIER
	BIT
	BITBANG
	BLIT
	BOX
	BYTE
	CALL
	CAN
	CAT
	CHDIR
	CIRCLE
	CLEAR
	CLOSE
	CLS
	COLOUR
	CONST
	CONTINUE
	COPY
	CONTROLLER CLASSIC
	CONTROLLER MOUSE
	CONTROLLER NUNCHUK
	CFUNCTION
	CSUB
	CPU RESTART
	DAC
	DATA
	DATE$
	DEFINEFONT
	DIM
	DO
	DRAW3D
	EDIT
	ELSE
	ELSEIF
	END
	END CSUB
	END FUNCTION
	ENDIF
	END SUB
	ERASE
	ERROR
	EXECUTE
	EXIT [DO|FOR|FUNCTION|SUB]
	FILES
	FILL
	FLAG
	FLAGS
	FONT
	FOR
	FRAMEBUFFER
	FUNCTION
	GOTO
	GUI
	GUI CURSOR
	GUI BITMAP
	HELP
	HUMID
	I2C
	IF
	IMAGE
	INC
	INPUT
	INTERRUPT
	IR
	KILL
	LMID
	LET
	LINE
	LINE AA
	LINE GRAPH
	LINE PLOT
	LINE INPUT
	LIST [ALL]
	LIST FILES
	LIST [COMMANDS|FUNCTIONS]
	LIST PAGES
	LIST PROFILE [CSV]
	LOAD DATA
	LOAD FONT
	LOCAL
	LONGSTRING
	LOOP
	LS
	MAP
	MATH
	MATH AES128
	MATH FFT
	MATH PID
	MATH SENSORFUSTION
	MATH SYNC
	MEMORY
	MEMORY PACK/UNPACK
	MEMORY PRINT/INPUT
	MEMORY SET
	MEMORY COPY
	MID$
	MKDIR
	MODE
	NEW
	NEXT
	ON ERROR
	ON KEY
	ONEWIRE
	OPEN
	OPTION
	PAGE
	PAUSE
	PIN
	PIXEL [FILL]
	POKE
	POLYGON
	PORT
	PRINT
	PULSE
	PWM
	RBOX
	READ
	READ SAVE|RESTORE
	REDIM
	RENAME
	RESTORE
	RMDIR
	RUN
	SAVE [DATA|IMAGE]
	SEEK
	SELECT CASE
	SERVO
	SETPIN
	SETPIN 18,[CIN|FIN]
	SETTICK [FAST|PAUSE|RESUME]
	SORT
	SPI
	SPRITE
	STATIC
	SUB
	TEMPR START
	TEXT
	TIME$
	TIMER
	TRACE
	TRIANGLE
	TURTLE
	UPDATE FIRMWARE
	VAR [SAVE|RESTORE|CLEAR]
	WATCHDOG
	WII CLASSIC
	WII NUNCHUK
	XMODEM [SEND|RECEIVE]

	Functions
	Detailed Listing
	ABS
	ACOS
	ASC
	ASIN
	ATAN2
	ATN
	BASE
	BAUDRATE
	BIN$
	BIN2STR$
	BIT
	BOUND
	BYTE
	CALL
	CHOICE
	CHR$
	CINT
	CLASSIC
	COS
	CWD$
	DATE$
	DATETIME$
	DAY$
	DEG
	DIR$
	DISTANCE
	DRAW3D
	EOF
	EPOCH
	EVAL
	EXP
	FIELD
	FIX
	FLAG
	FORMAT$
	GETSCANLINE
	GPS
	HEX$
	INKEY$
	INPUT$
	INSTR
	INT
	JSON$
	KEYDOWN
	LCASE$
	LCOMPARE
	LEFT$
	LEN
	LGETBYTE
	LGETSTR$
	LINPUT
	LINSTR
	LLEN
	LOC
	LOF
	LOG
	MAP
	MATH
	MATH CRC
	MATH(BASE64 ENCODE/DECODE
	MATH PID
	MAX/MIN
	MID$
	MOUSE
	NUNCHUK
	OCT$
	PEEK
	PI
	PIN
	PIXEL
	PORT
	PULSIN
	RAD
	RGB
	RIGHT$
	RND
	SGN
	SIN
	SPACE$
	SPI
	SPRITE
	STR2BIN
	SQR
	STR$
	STRING$
	TAB
	TAN
	TEMPR
	TIME$
	TIMER
	TRIM$
	UCASE$
	VAL

	Obsolete Commands and Functions
	Appendix A – Serial Communications
	Appendix B – I2C Communications
	Appendix C – 1-Wire Communications
	Appendix D – SPI Communications
	Appendix E – Sprites
	Appendix F – Turtle Graphics
	Appendix G - Cyclic Redundancy Check (CRC)
	Appendix H - Regular Expressions
	Appendix I – Special Keyboard Keys
	Appendix J – CAN Support
	Appendix K – Loading the Firmware

