FRAME Command User Manual

Overview

The "FRAME" command provides a character-cell based frame buffer with box-drawing and
panel management for text-mode user interfaces. It works on both VGA displays and serial
terminals (e.g. TeraTerm).

The frame buffer is a grid of character cells sized to fit the current display resolution

using the active font. Each cell stores an ASCII character, a 4-bit foreground colour, and

a 4-bit background colour. Changes are composed in memory and rendered to the screen with
"FRAME WRITE", allowing flicker-free updates.

Panels are rectangular regions within the frame buffer that act as independent text

output areas. Each panel maintains its own cursor position, enabling structured layouts

such as status bars, log windows, and multi-pane dashboards.

Terminal Setup

For serial terminal use (e.g. TeraTerm), the terminal must be configured to use a
CP437-compatible font so that box-drawing characters (codes 179-218) display correctly.
Text colours are sent as standard ANSI 16-colour escape sequences ("\033[3Xm" /
"\033[9Xm") which are universally supported by terminal emulators.

TeraTerm configuration:
- Setup -> Font -> select a CP437-capable font (e.g. *Terminal**)
- Setup -> Terminal -> Coding -> Receive: *English/US** or **CP437**

Command Reference

FRAME CREATE
FRAMVE CREATE

Creates the frame buffer. The buffer dimensions are calculated from the display
resolution and the current font size:
- Width = "HRes / font_width" characters
- Height = "VRes / font_height" characters
The frame buffer is initially filled with spaces. On a serial terminal, the terminal
window is resized to match and the screen is cleared.
Only one frame buffer can exist at a time. Calling "FRAME CREATE" when a frame already
exists produces an error. The frame is automatically destroyed by "CloseAllFiles" (e.g.
when a program ends or "RUN" is issued).

Example:
FRAVE CREATE

FRAME CLOSE
FRAVE CLOSE

Destroys the frame buffer and releases all associated memory, including all panel
definitions. Produces an error if no frame exists.

Example:
FRAME CREATE
' use the frane ...
FRAVE CLOSE

Page 1

FRAME BOX

FRAME BOX X, Yy, W,

FRAME Command User Manual

h [, cols, rows [, fc [, DOUBLE]]]

Draws a box-drawing grid in the frame buffer and automatically registers the interior
cells of each grid subdivision as a numbered panel.

Parameter Description
ba% Top-left corner position in character coordinates (0-based)
‘w, h® Width and height of the outer box in characters
“cols’ Number of columns in the grid (default: 1)
‘rows’ Number of rows in the grid (default: 1)
fc” Foreground colour for the box-drawing characters (default: current ...
"DOUBLE® Use double-line box-drawing characters instead of single-line

The grid interior is divided as evenly as possible. When the space does not divide
evenly, the remainder is distributed across the first columns/rows (each getting one

extra character of width/h

eight).

Panels are numbered sequentially starting from the next available panel ID, in
row-major order (left to right, top to bottom). For example, a 3x2 grid creates

6 panels:
PFoococoo docoooo Poooo
| PL | P2 | PS3
fhoocooo foocoooc fhooco
| P4 | P5 | P6
PFoococoo docoooo Poooo

Multiple "FRAME BOX" calls accumulate panels. A second "FRAME BOX" creating 2 panels

after the first created 4 would number them as panels 5 and 6.

The box must be large en
- Width must be at least

ough to hold the grid structure:
"2 x cols" characters

- Height must be at least "2 x rows" characters

Examples:

Si npl e singl e box
FRAME BOX 0, 0, 40,

2x2 quad | ayout (
FRAME BOX 0, 0, 60,

Doubl e-line 3x3 g
FRAME BOX 5, 2, 60,

FRAME TITLE
FRAME TI TLE panel _i

(1 panel)
12

4 panel s)
20, 2, 2

ridin white
24, 3, 3, RGB(WH TE), DOUBLE

d, text$ [, colour]

Centres a title string in the top border of a panel or overlay. The title is rendered
between bracket characters that connect naturally with the border line.

The border style (single o

r double) is auto-detected from the panel's corner character.

Parameter Description
‘panel_id’ Panel number
“text$’ Title text
“colour’ Title colour (default: panel's default foreground)
Examples:

Title on a single
FRAMVE BOX 0, 0, 40,

-line box: +-

10

-+ My Panel

Page 2

FRAME Command User Manual

FRAME TI TLE 1, "My Panel "

Title on a double-line overlay: =+ Dialog +=
FRAMVE OVERLAY 10, 30, 8, RGB(WH TE), DOUBLE
FRAME TI TLE 10, "Di al og", RGB(YELLOW

FRAME HLINE
FRAME HLI NE panel _id, row [, colour [, DOUBLE]]

Draws a horizontal divider line across the panel at the specified row, with correct
T-junction characters connecting to the left and right borders. The junction style is
automatically matched to the panel's border style.

Parameter Description
‘panel_id’ Panel number
“row’ Row within the panel (0-based) where the divider is drawn
“colour Divider colour (default: current foreground)
"DOUBLE® Use double-line horizontal line style

Note: The divider overwrites one row of panel content. Position panel cursor
accordingly.

Example:
FRAME BOX 0, 0, 40, 12
FRAME PRI NT 1, "Header text"
FRAME HLINE 1, 1 ' Single-line divider at row 1
FRAME CURSOR 1, 0, 2
FRAME PRINT 1, "Body text below the divider"
FRAME WRI TE

FRAME COLOUR
FRAME COLOUR panel _id, fg [, bg]

Sets the default foreground and optional background colour for a panel. These defaults
are used by "FRAME PRINT" when no explicit colour is specified, and by "FRAME CLS" when
clearing the panel.

Parameter Description
‘panel_id’ Panel number
fg° Default foreground colour
‘bg” Default background colour (default: black)

Changing colours does not repaint existing content. Use "FRAME CLS" after "FRAME COLOUR"
to fill the panel with the new background colour.

Example:
Create a panel with blue background and white text
FRAME BOX 0, 0, 40, 10
FRAME COLOUR 1, RGB(WH TE), RGB(BLUE)
FRAME CLS 1 " Fill with blue background
FRAME PRINT 1, "Wite on blue!"

Hi ghl i ght bar (change bg, print, change back)
FRAME COLOUR 1, RGB(BLACK), RGB(YELLOW
FRAME PRINT 1, CHR$(10) + " Selected Item
FRAME COLOUR 1, RGB(WH TE), RGB(BLUE)
FRAME PRINT 1, CHR$(10) + " Nornal Itent
FRAME WRI TE

Page 3

FRAME Command User Manual

FRAME PRINT panel id, text$ [, fc [, WRAP]]

Writes text into the specified panel, starting at the panel's current cursor position.

Parameter Description
‘panel_id’ Panel number (1-based, as assigned by "TFRAME BOX" or 'FRAME PANEL")
“text$” String to write
“fe” Foreground colour (default: panel's default foreground, set by "FRA...
"WRAP® If specified, text wraps to the next line at the panel edge. If omi...

The panel cursor advances with each character written and persists between calls. This
means successive "FRAME PRINT" calls continue where the previous one left off.

Each character is written with the specified foreground colour and the panel's default
background colour. Use "FRAME COLOUR" to change the background colour before printing.
Newline characters ("CHR$(10)") move the cursor to the beginning of the next line within

the panel. Carriage return ("CHR$(13)") moves to the beginning of the current line.

Text that reaches the bottom of the panel is discarded unless "WRAP" is specified.

When "WRAP" is enabled and the cursor moves past the last line, the panel contents
automatically scroll up by one line and writing continues on the newly cleared bottom

line. This makes panels behave like a scrolling terminal window.

Examples:

Si npl e text out put
FRAME PRINT 1, "Hello World"

Col oured text
FRAME PRI NT 1, "Warning!", RGB(RED)

W appi ng text
FRAME PRINT 1, "This long nessage will wap within the panel.", , WRAP

Cursor persistence - outputs "AB" on the same |ine
FRAME PRINT 1, "A"
FRAME PRINT 1, "B"

New i ne
FRAME PRINT 1, "Line 1" + CHR$(10) + "Line 2"

FRAME INPUT
FRAME | NPUT panel _id, variable [, pronpt$ [, fc]]

Panel-aware line input. Reads a line of text from the console into the specified panel,
echoing each character as it is typed. The result is stored in "variable" when Enter
is pressed.

Parameter Description
“panel_id’ Panel number (1-based). Can be a main-frame panel or a visible over...
“variable’ The variable to store the input in. Can be string, integer, or floa...
‘prompt$’ Optional prompt text displayed in the panel before the input cursor...
fc” Optional foreground colour (RGB121). Defaults to the panel's defaul...

The input uses the panel's default background colour (set via "FRAME COLOUR").

Behaviour:
- The frame is rendered to the screen before each keystroke, providing live visual feedback
- On a serial terminal the cursor is positioned at the input location via VT100 sequences
- When "FRAME CURSOR ON" is active, the cursor blinks at the input position on both the
LCD display (colour inversion) and serial terminal (VT100 cursor show/hide) at ~500 ms

Page 4

FRAME Command User Manual

intervals
- Backspace deletes the last character typed
- Enter terminates input and stores the result
- Non-printable characters and escape sequences are ignored
- If the cursor reaches the right edge of the panel, it wraps to the next line
- If the cursor reaches the bottom of the panel, contents scroll up automatically
- After Enter, the panel cursor advances to the start of the next line
- Works with overlay panels -- the cursor is correctly positioned on-screen
- Ctrl-C aborts the input (standard MMBasic break behaviour)

Variable types:
- String variables store the raw text
- Integer variables convert the text via "strtoll" (base 10)
- Float variables convert the text via "atof"

Examples:
' Sinple string input
DI M nane$ LENGTH 30
FRAME | NPUT 1, name$, "Nane:

I nput with col our
FRAME | NPUT 1, nane$, "Enter: ", RGB(CYAN)

Nurreri c i nput
DI M age%
FRAME | NPUT 1, age% "Age:

Input in an overl ay
FRAME OVERLAY 10, 40, 5, RGB(WH TE)
FRAME SHOW 10, 10, 8
FRAME | NPUT 10, response$, "OK? "
FRAME H DE 10

FRAME CLS
FRAME CLS [panel _id]

Clears the frame buffer or a specific panel.

- **Without "panel_id":** Clears the entire frame buffer (all cells set to zero/space).
All panel cursor positions are reset to (0,0), but panel definitions are preserved.

- **\With "panel_id":** Clears only the specified panel's interior and resets its cursor
to (0,0). If the panel has a background colour set via "FRAME COLOUR", the cleared
area is filled with that background colour. The box-drawing borders and other panels
are unaffected.

Examples:
Cl ear just panel 3
FRAME CLS 3
Clear entire frame (panels still defined)
FRAME CLS

FRAME CLEAR
FRAMVE CLEAR

Clears the entire frame buffer **and destroys all panel definitions**. The frame buffer
itself remains allocated. After "FRAME CLEAR", new panels must be created with

Page 5

FRAME Command User Manual

"FRAME BOX" or "FRAME PANEL" before using "FRAME PRINT".
This is more aggressive than "FRAME CLS" which preserves panel definitions.

Example:
FRAME CLEAR
' Al panels gone - create new ones
FRAME BOX 0, 0, 40, 12

FRAME WRITE
FRAVE WRI TE

Renders the frame buffer to the screen. Only cells that have changed since the last

"FRAME WRITE" are updated, making this efficient for incremental updates.

On VGA displays, characters are drawn using "DisplayPutC". On serial terminals,

characters are sent as raw bytes with VT100 cursor positioning and colour escape
sequences.

"FRAME WRITE" should be called after composing all changes for a given update cycle. This
approach avoids flicker by batching all modifications before rendering.

Example:

FRAME BOX 0, 0, 40, 10
FRAME PRINT 1, "Hell o"
FRAMVE VWRI TE " Now the box and text appear on screen

FRAME CURSOR

FRAVE CURSOR panel _id, X, vy
FRAVE CURSOR ON
FRAVE CURSOR OFF

Positioning form: Sets the logical cursor position for a panel. The cursor tracks
where the next "FRAME PRINT" will write text. Each panel maintains its own cursor,
initialised to (0, 0) when the panel is created.

Parameter Description
‘panel_id’ Panel number (1-based)
X Column within the panel interior (0-based)
Yy Row within the panel interior (0-based)

Query the current cursor with "FRAME(PX id)" and "FRAME(PY id)".

Visibility form: "FRAME CURSOR ON" enables the visible cursor; "FRAME CURSOR OFF"
disables it.

When the cursor is enabled:

- On the *LCD/VGA display**, the cursor is drawn by inverting the foreground and
background colours of the cell at the cursor position. If the cell's foreground
and background would be the same after inversion (making the cursor invisible),

a high-contrast fallback is used (white-on-black or black-on-white).

- On a **serial terminal**, the VT100 cursor visibility escape sequences
("\033[?25h" / "\033[?25I") are used.

- The cursor **blinks** at approximately 500 ms intervals during "FRAME(INKEY)" polling
loops and "FRAME INPUT" wait states. Outside these wait states the cursor is shown
statically after each "FRAME WRITE".

The cursor is drawn at the logical cursor position of the most recently written panel
(tracked by "FRAME PRINT" and "FRAME WRITE"). For overlay panels, the cursor position
is offset to the overlay's on-screen location.

Page 6

FRAME Command User Manual

Examples:
' Enabl e cursor, position it, then wite
FRAME CURSOR ON
FRAME CURSCR 1, 5, O
FRAME PRI NT 1, "Here"
FRAMVE VWRI TE

Wait for a key with blinking cursor
k$ = FRAME(INKEY): DO WHILE k$ = "": k$ = FRAME(INKEY): LOOP

Di sabl e cursor
FRAME CURSOR OFF
FRAME WRI TE

FRAME PANEL
FRAVE PANEL id, X, y, w, h

Manually defines or redefines a panel at arbitrary frame buffer coordinates. This is
useful for creating panels without a grid box, or for mapping a panel onto a custom
hand-drawn border.

Parameter Description
‘id’ Panel number to define (1-based). If the ID exceeds the current cou...
ban Top-left corner of the panel interior (character coordinates)
‘w, h’ Width and height of the panel interior in characters

The panel's cursor is reset to (0,0). If a panel with the given ID already exists, it is
redefined.

Example:
Draw a custom border

FRAVE 0, 0, "+----+", RGB(YELLOW
FRAME 0, 1, "| | ", RGB(YELLOW
FRAME 0, 2, "| | ", RGB(YELLOW
FRAME 0, 3, "+----+", RGB(YELLOW

Define the interior as panel 1
FRAME PANEL 1, 1, 1, 4, 2

Now use it
FRAME PRINT 1, "H "
FRAME WRI TE

FRAME x, y, text$ [, fc [, bc]]
FRAME x, vy, text$ [, fc [, bc]]

Legacy direct text output. Writes a string at the specified character position without
using the panel system.

Parameter Description
ban Starting character position (0-based)
“text$’ String to write
“fc” Foreground colour (default: current foreground)
“bc” Background colour (default: black)

Text that reaches the right edge wraps to the beginning of the next line. Text that
reaches the bottom of the frame is discarded.

Page 7

FRAME Command User Manual

Example:
FRAME 0, 0, "Title Bar", RGB(WHI TE)
FRAME 10, 5, "Status: OK', RGB(GREEN)
FRAME VRI TE

Overlays

Overlays are independent frame buffers that can be displayed on top of the main frame

at any position. They are useful for pop-up dialogs, menus, tooltips, and other

temporary Ul elements.

Each overlay acts as a single panel with its own unique panel ID. All standard

panel-based commands ("FRAME PRINT", "FRAME CLS", "FRAME CURSOR") work with overlay
panels exactly as they do with main frame panels.

When multiple overlays overlap, the most recently shown overlay appears on top.

FRAME OVERLAY
FRAME OVERLAY panel _id, width, height [, colour [, DOUBLE]]

Creates an overlay with a private frame buffer and a border.

Parameter Description
“panel_id’ Unique panel ID for this overlay (must not conflict with existing p...
‘width® Total width of the overlay including border (minimum 3)

“height Total height of the overlay including border (minimum 3)
“colour’ Optional border colour (default: current foreground colour)
"‘DOUBLE® Optional keyword to use double-line border style

The overlay is created with a single-line border (or double-line if "DOUBLE" is specified).
The panel interior is the area inside the border, i.e. (width-2) x (height-2) characters.
The overlay is initially hidden. Use "FRAME SHOW" to display it.

FRAME SHOW
FRAME SHOW panel _id, x, y

Shows an overlay at position (X, y) on the main frame. The overlay is composited on
top of the main frame content during "FRAME WRITE".

Calling "FRAME SHOW" on an already visible overlay moves it to the new position and
brings it to the top of the z-order.

Parameter Description
“panel_id’ Panel ID of the overlay
ba% Position on the main frame for the overlay's top-left corner
FRAME HIDE

FRAME HI DE panel _id
Hides an overlay. The main frame content underneath is automatically restored on the
next "FRAME WRITE". The overlay's content is preserved and can be shown again later.
FRAME DESTROY

FRAVE DESTROY panel _id

Destroys an overlay and frees its memory. The panel ID becomes inactive. Only works
on overlay panels (not main-frame panels created by "FRAME BOX" or "FRAME PANEL").
Use this to free memory when a dialog is no longer needed, rather than keeping it

Page 8

FRAME Command User Manual

hidden indefinitely.

Example:
FRAME CREATE

Create a main frame | ayout
FRAME BOX 0, 0O, 78, 24, 2, 1
FRAME PRI NT 1, "Main Panel 1"
FRAME PRI NT 2, "Main Panel 2"

Create a pop-up overlay (panel 10) with white border
FRAME OVERLAY 10, 30, 8, RGB(WH TE)
FRAME PRINT 10, "=== Pop-Up Di al og ==="
FRAME PRI NT 10, CHR$(10) + "Press any key to cl ose"

Show it centred
FRAVE SHOW 10, 24, 8
FRAME VWRI TE

k$ = FRAVE(INKEY) : DO WHILE k$ = "" : k$ = FRAVE(I NKEY) : LOOP

Hi de the pop-up, main content restored
FRAMVE HI DE 10
FRAME VRI TE

Multiple overlays can be stacked:
FRAME OVERLAY 20, 20, 5, RGB(YELLOW
FRAME PRI NT 20, "Overlay A"
FRAME OVERLAY 21, 20, 5, RGB(CYAN), DOUBLE
FRAME PRI NT 21, "Overlay B"

FRAMVE SHOW 20, 5, 5
FRAME SHOW 21, 10, 7 ' Shown | ast, so on top where they overl ap
FRAME VWRI TE

Virtual Buffers

A virtual buffer (vbuf) allows a panel to hold content that is larger than its
visible area. Content is written into the virtual buffer using "FRAME PRINT" at
the full virtual dimensions. A viewport defined by scroll offsets determines
which portion of the virtual buffer is displayed in the panel.

This is ideal for scrollable content such as directory listings, log windows,
help text, or any data set that exceeds the visible panel size.

FRAME VBUF
FRAME VBUF panel _id, vw dth, vheight

Allocates a virtual buffer of "vwidth" x "vheight" cells for the specified panel.
The virtual dimensions must be at least as large as the panel interior (they can
be larger in either or both directions). The buffer is filled with spaces using
the panel's default colours, and the panel cursor is reset to (0, 0).
If the panel already has a virtual buffer, it is freed and replaced.

- "panel_id" -- The panel to attach the virtual buffer to.

- "vwidth" -- Width of the virtual buffer in characters (1-10000).

- "vheight" -- Height of the virtual buffer in characters (1-10000).

Example:
FRAME CREATE
FRAME BOX 1, 1, 40, 12 ' Panel 1 interior is 38x10

Page 9

FRAME Command User Manual

FRAME VBUF 1, 80, 100 " Virtual buffer is 80x100

After creating a vbuf, all "FRAME PRINT" and "FRAME CLS" operations on the panel
write into the virtual buffer at its full dimensions, not the visible panel area.

FRAME SCROLL
FRAME SCROLL panel _id, sx, sy

Sets the viewport scroll offset for a panel that has a virtual buffer.
The viewport top-left corner maps to position ("sx", "sy") in the virtual buffer.

- "panel_id" -- The panel to scroll.

- "sx" -- Horizontal scroll offset (0 to vwidth ? panel_width).

- "sy" -- Vertical scroll offset (0 to vheight ? panel_height).
When FRAME WRITE is called, the visible portion of the virtual buffer (from the
scroll offset for the panel's width and height) is copied into the panel's

display area before rendering.

Example:
Scroll to show lines 20-29 of an 80x100 virtual buffer in a 38x10 panel
FRAME SCRCOLL 1, 0, 20
FRAME WRI TE

Virtual Buffer Lifecycle

- "FRAME CLS panel_id" clears the entire virtual buffer (not just the viewport).
- "FRAME CLOSE", "FRAME CLEAR", and "FRAME DESTROY" automatically free any vbufs.
- The virtual buffer persists across "FRAME SCROLL" calls.

- The panel cursor ("cx", "cy") operates in virtual buffer coordinates.

Querying Virtual Buffer State

Function Returns
"FRAME(VW id)’ Virtual buffer width (O if no vbuf)
"FRAME(VH id) Virtual buffer height (0 if no vbuf)
"FRAME(SX id)’ Current horizontal scroll offset (0 if no vbuf)
"FRAME(SY id)’ Current vertical scroll offset (0 if no vbuf)

Interactive Scrolling Example

FRAVE CREATE
FRAME BOX 1, 1, 40, 12
FRAME VBUF 1, 80, 50

Fill with content
FOR i%= 0 TO 49

FRAME PRINT 1, “"Line " + STR$(i% + ": data..." + CHR$(10)
NEXT i %

Scroll loop with arrow keys

DM sx% =0, sy% =0
DI M pw = FRAME(PW 1), ph% = FRAVE(PH 1)
DO

k$ = FRAME(| NKEY)

IF k$ <> "" THEN

I F ASC(k$) = 128 AND sy% > O THEN sy% = sy%- 1 " Up
I F ASC(k$) = 129 AND sy% < 50-ph% THEN sy% = sy% + 1 ' Down
IF ASC(k$) = 130 AND sx% > 0 THEN sx% = sx% - 1 " Left
I F ASC(k$) = 131 AND sx% < 80-pwd% THEN sx% = sx% + 1 ' Right

IF k$ = "gq" THEN EXIT DO

Page 10

FRAME Command User Manual

FRAME SCROLL 1, sx% sy%
FRAME WRI TE
ENDI F
LOCP
FRAME CLOSE

FRAME() Function Reference

The "FRAME()" function queries the state of the frame buffer, panels, and overlays.
All queries return integers unless stated otherwise.
Frame Dimensions

FRAVME(W DTH) ' Returns the frame width in characters
FRAME(HEI GHT) ' Returns the frame height in characters

Returns 0 if no frame has been created.

Panel and Overlay Counts

FRAME(PANELS) ' Returns the nunber of active panels
FRAME(OVERLAYS) ' Returns the nunber of overlays (visible or hidden)

Panel Dimensions

FRAME(PW panel _i d) ' Returns the interior width of a panel
FRAVE(PH panel _i d) ' Returns the interior height of a panel

The interior dimensions exclude the box-drawing border. For example, a box drawn
at 0,0 to 40,24 with a 2x1 grid will have two panels each with an interior width

of 19 and height of 23.

Panel Cursor Position

FRAME(PX panel _i d) ' Returns the panel's cursor X position (0-based)
FRAVE(PY panel _i d) ' Returns the panel's cursor Y position (0-based)

These return the current cursor position within the panel, relative to the panel's
top-left interior corner.
Panel Colours

FRAVE(FC panel _i d) ' Returns the panel's default foreground col our (RGB121 index)
FRAME(BC panel _i d) " Returns the panel's default background col our (RGB121 i ndex)

Panel Status

FRAVE(ACTI VE panel _i d) ' Returns 1 if the panel is active, 0 if not
FRAMVE(VI SI BLE panel _id) ' Returns 1 if the overlay is visible, O if hidden

"ACTIVE" works for any panel (main-frame or overlay). "VISIBLE" only works for overlay
panels and will generate an error if used on a main-frame panel.

Virtual Buffer Queries

FRAVE(VW panel _i d) ' Returns virtual buffer width (0 if no vbuf)
FRAVE(VH panel _i d) " Returns virtual buffer height (0 if no vbuf)
FRAME(SX panel _i d) " Returns horizontal scroll offset (0 if no vbuf)
FRAMVE(SY panel _i d) ' Returns vertical scroll offset (0 if no vbuf)

These queries return 0 when the panel does not have a virtual buffer attached.

Page 11

FRAME Command User Manual

Reading Cells
FRAVE(CELL x, vY) ' Read a cell fromthe main franme buffer
FRAVE(PCELL panel _id, x, YY) ' Read a cell froma panel's buffer

Returns the raw 16-bit cell value. To extract the components:
cell % = FRAME(CELL x, vy)

ascii % = cell % AND &HFF ' Character code (bits 0-7)
f g% = (cell % >> 8) AND &HF ' Foreground col our (bits 8-11)
bg% = (cell % >> 12) AND &HF ' Background col our (bits 12-15)

"PCELL" coordinates are relative to the panel's interior (0-based).

Key Input
FRAME(| NKEY) " Non-bl ocking key read (returns string, |ike |NKEY$)

Returns a single-character string if a key has been pressed, or an empty string if

no key is available. This is the frame-aware equivalent of "INKEY$" and should be

used in place of "INKEY$" when a frame is active.

When "FRAME CURSOR ON" is active, each call to "FRAME(INKEY)" checks the blink timer
and toggles the cursor on/off at ~500 ms intervals, providing a blinking cursor on

both the LCD display and serial terminal while polling for input.

Example -- wait for a keypress with blinking cursor:
FRAME CURSOR ON
FRAMVE VWRI TE
k$ = FRAVE(I NKEY): DO WHILE k$ = "": k$ = FRAME(INKEY): LOOP

A frame must be created before calling "FRAME(INKEY)".

Examples

FRAME CREATE
FRAME BOX 0, 0, 78, 24, 2, 1

Query the | ayout

PRINT "Frane: " + STR$(FRAME(WDTH)) + "x" + STR$(FRAME(HEI GHT))

PRI NT "Active panels: " + STR$(FRAME(PANELS))

PRI NT "Panel 1 size: " + STR$(FRAME(PW 1)) + "x" + STR$(FRAME(PH 1))

Wite sone text
FRAME PRINT 1, "Hello"
PRINT "Cursor at: " + STRS(FRAME(PX 1)) + ", " + STR$(FRAMVE(PY 1))

Read back a cell
cel | % = FRAME(PCELL 1, 0, 0)
PRINT "First char: " + CHR$(cell % AND &HFF)

FRAME CLOSE

Colour Handling

Colours are specified as standard MMBasic RGB values (e.g. "RGB(RED)", "RGB(WHITE)",
"RGB(128,255,0)". Internally, colours are converted to 4-bit RGB121 encoding for

storage in the frame buffer (1 bit red, 2 bits green, 1 bit blue = 16 colours).

The 16 available colours correspond to the standard VGA palette. On serial terminals,
colours are mapped to the nearest ANSI 16-colour SGR codes:

RGB121 Index Colour ANSI SGR Code

Page 12

FRAME Command User Manual

0 Black 30
1 Blue 34
2 Dark Green 32
3 Dark Cyan 36
4 Green 32
5 Sky Blue 94
6 Bright Green 92
7 Cyan 96
8 Red 31
9 Magenta 35
10 Brown/Orange 33
11 Light Magenta 95
12 Orange 93
13 Pink 95
14 Yellow 93
15 White 97

Frame Buffer Architecture

Each cell in the frame buffer is stored as a 16-bit value:

Bits Content
0-7 ASCII character code (0-255)
8-11 Foreground colour (4-bit RGB121)
12-15 Background colour (4-bit RGB121)

A cell value of zero represents an empty/space cell.
The frame buffer uses a shadow buffer ("outframe") to track what has been rendered.

"FRAME WRITE" compares the two buffers and only updates cells that have changed,
providing efficient differential rendering.

Box-Drawing Characters
The "FRAME BOX" command uses CP437 box-drawing characters:

Single Line
Character Code Description
+ 218 Top-left corner
+ 191 Top-right corner
+ 192 Bottom-left corner
+ 217 Bottom-right corner
- 196 Horizontal line
179 Vertical line
+ 197 Cross
+ 194 Top tee
+ 193 Bottom tee
+ 195 Left tee
+ 180 Right tee
+ 198 Single vert / double horiz right
+ 181 Single vert / double horiz left
+ 199 Double vert / single horiz right

Page 13

FRAME Command User Manual

|+ |182

| Double vert / single horiz left

Double Line

Character Code Description
+ 201 Top-left corner
+ 187 Top-right corner
+ 200 Bottom-left corner
+ 188 Bottom-right corner
= 205 Horizontal line
186 Vertical line
+ 206 Cross
+ 203 Top tee
+ 202 Bottom tee
+ 204 Left tee
+ 185 Right tee

Asymmetric Layouts

"FRAME BOX" creates uniform grids -- every row has the same number of columns. For
asymmetric layouts such as a full-width panel above two half-width panels, combine
"FRAME BOX", manual box-drawing characters, and "FRAME PANEL".

The technique is:

1. Use "FRAME BOX" to draw the outer border with a horizontal divider (1x2 grid),
giving a full-width top panel and a full-width bottom panel.

2. Manually draw a vertical divider in the bottom section only, using legacy text
output ("FRAME X, y, text$") with the appropriate box-drawing characters.

3. Redefine the bottom panel with "FRAME PANEL" to cover just the left half, and

add a new panel for the right half.

This avoids wasting a column by not placing an unnecessary vertical divider through

the top panel.

Example -- full-width header with two columns below:
FRAME CREATE
' Draw outer box with horizontal divider (1x2 = top + botton)
FRAME BOX 0, O, 80, 25, 1, 2

Panel 1
Panel 2

full-width top section (already created by BOX)

Add vertical divider in bottom section only

full-wi dth bottom section (wll be redefined bel ow)

The horizontal divider is at row 12, bottom border at row 24

M dpoi nt colum for an 80-w de box = colum 40

Top T-junction where vertical meets horizontal divider
FRAME 40, 12, CHR$(194), RGB(WH TE)

Vertical lines through the bottom section interior
DIMi %
FOR i% = 13 TO 23

FRAME 40, i% CHR$(179), RGB(WH TE)
NEXT i %

Bottom T-j unction where vertical meets bottom border

Page 14

FRAME Command User Manual

FRAVE 40, 24, CHR$(193), RGB(WH TE)

Redefi ne panel 2 as left half, add panel 3 as right half
FRAME PANEL 2, 1, 13, 39, 11
FRAME PANEL 3, 41, 13, 38, 11

Use the panels

FRAME PRINT 1, "Full-w dth header panel”

FRAME PRINT 2, "Left col um"

FRAME PRI NT 3, "Right colum"

FRAVE VWRI TE
The same approach works for any asymmetric arrangement. For double-line borders,
use the corresponding double-line characters (CHR$(186) for vertical, CHR$(203)
for top tee, CHR$(202) for bottom tee).

Lifecycle and Cleanup

The frame buffer is automatically cleaned up by "CloseAllFiles", which is called when:

- A program ends normally

- "RUN" is issued

- An error occurs and control returns to the command prompt
This means you do not need to explicitly call "FRAME CLOSE" at the end of a program,
though you may call it if you need to release the memory during program execution.

Differences: CLS vs CLEAR vs CLOSE

Command Frame buffer Panel definitions Memory
"'FRAME CLS® Cleared Preserved Kept
"'FRAME CLS n° Panel n cleared Preserved Kept
"FRAME CLEAR® Cleared **Destroyed** Kept
"FRAME CLOSE® **Ereed** **Destroyed** **Ereed**
"FRAME DESTROY n’ n/a Overlay **Destroyed*... Overlay **Freed**

Complete Example

Dashboard with status and | og panels
FRAME CREATE

' Create a 2x1 layout: status on left, log on right
FRAME BOX 0, 0, 78, 24, 2, 1

Wite status info in panel 1

FRAME PRI NT 1, "=== STATUS ===", RGB(YELLOW

FRAME PRINT 1, CHR$(10)

FRAME PRINT 1, "Tenperature: 23.5C', RGB(GREEN), WRAP

FRAME PRINT 1, CHR$(10)

FRAME PRINT 1, "Humidity: 45% , RGB(GREEN), WRAP
Wite log entries in panel 2

FRAME PRI NT 2, "=== LOG ===", RGB(YELLOW

FRAME PRINT 2, CHR$(10)

FRAME PRINT 2, "10:00 Systemstart", RGB(WH TE), WRAP

FRAME PRI NT 2, CHR$(10)

FRAME PRI NT 2, "10:01 Sensors OK', RGB(WH TE), WRAP

FRAME PRINT 2, CHR$(10)

Page 15

FRAME Command User Manual

FRAME PRI NT 2, "10:02 Reading data", RGB(CYAN), WRAP
FRAME VWRI TE

' Wit then update a val ue

PAUSE 2000

FRAME CLS 1

FRAME PRI NT 1, "=== STATUS ===", RGB(YELLOW

FRAME PRI NT 1, CHR$(10)

FRAME PRINT 1, "Tenperature: 24.1C', RGB(RED), WRAP

FRAME PRI NT 1, CHR$(10)

FRAME PRINT 1, "Humdity: 43% , RGB(GREEN), WRAP

FRAME WRI TE

PAUSE 3000

FRAME CLOSE
Error Messages

Error Cause

“Frame already exists’ "FRAME CREATE" called when a frame buffer is already allocate...
“Frame not created’ Any command other than "CREATE" used before 'FRAME CREATE"
"Frame does not exist’ "FRAME CLOSE" called when no frame exists
“Panel not active’ "FRAME PRINT" or 'FRAME CLS" used with an inactive panel ID
"Not an overlay panel’ "FRAME DESTROY", 'FRAME SHOW", or 'FRAME HIDE" used on a non-...
“Panel ID already in us... "FRAME OVERLAY" used with a panel ID that is already active
“Panel has no virtual b... "FRAME SCROLL ' used on a panel without a vbuf
"Box too narrow’ Box width is less than "2 x cols’
"Box too short® Box height is less than "2 x rows’
“Syntax error’ Missing required parameters

Page 16

